Atjaunināt sīkdatņu piekrišanu

E-grāmata: Gravity, Special Relativity, and the Strong Force: A Bohr-Einstein-de Broglie Model for the Formation of Hadrons

  • Formāts: PDF+DRM
  • Izdošanas datums: 26-Jul-2012
  • Izdevniecība: Springer-Verlag New York Inc.
  • Valoda: eng
  • ISBN-13: 9781461439363
  • Formāts - PDF+DRM
  • Cena: 106,47 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Izdošanas datums: 26-Jul-2012
  • Izdevniecība: Springer-Verlag New York Inc.
  • Valoda: eng
  • ISBN-13: 9781461439363

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book shows that strong interaction forces, which keep hadrons and nuclei together, are relativistic gravitational forces exerted between very small particles in the mass range of neutrinos. Discusses implications for unification of forces and much more.

This book shows that the strong interaction forces, which keep hadrons and nuclei together, are relativistic gravitational forces exerted between very small particles in the mass range of neutrinos. First, this book considers the problematic motion of two charged particles under the influence of electrostatic and gravitational forces only, which shows that bound states are formed by following the same semi-classical methodology used by Bohr to describe the H atom. This approach is also coupled with Newton’s gravitational law and with Einstein’s special relativity. The results agree with experiments on the masses and magnetic moments of hadrons and the binding energies of small nuclei. The analysis of these experiments provide the means to rationalize all the main experimental features of the strong force. Some of the implications for the unification of forces and the nature of our micro-cosmos and macro-cosmos are also discussed. The creation of mass itself, in other words, of hadrons from particles as light as neutrinos, can now be modeled in a straightforward manner.
1 1905-1930: The Golden Age of Physics
1(14)
1.1 The Three Major Breakthroughs
1(1)
1.2 Open Problems
1(3)
1.3 A Common Starting Point for Natural Scientists: The Bohr Model for the H Atom
4(3)
1.4 Deterministic and Probabilistic Models
7(1)
1.5 Newton's Gravitational Law, Special Relativity, and the Equivalence Principle
8(1)
1.6 Relativistic Rotating Particle Models for Hadrons
9(3)
1.7 Synopsis
12(3)
References
12(3)
2 Mass, Special Relativity and the Equivalence Principle
15(8)
2.1 The Concept of Mass
15(1)
2.2 The Equivalence Principle
16(1)
2.3 Rest, Relativistic, Inertial, and Gravitational Mass in Special Relativity: Some Questions
17(1)
2.4 Newton's Gravitational Law, Velocity and General Relativity
18(2)
2.5 Quantum Gravity
20(1)
2.6 Synopsis
21(2)
References
22(1)
3 The Strong Force: From Quarks to Hadrons and Nuclei
23(8)
3.1 The Strong Force
23(5)
3.1.1 Classical and Quantized Fields
23(1)
3.1.2 The Mediation Mechanism
24(1)
3.1.3 History and the Postulate of Color Charge
24(1)
3.1.4 Properties of the Strong Force
25(1)
3.1.5 The Residual Strong Force
25(2)
3.1.6 Quantum Chromodynamics
27(1)
3.2 Synopsis
28(3)
References
28(3)
4 The World of Particles and the Standard Model
31(20)
4.1 Elementary Particles
31(5)
4.1.1 History
31(2)
4.1.2 The Standard Model of Elementary Particles
33(3)
4.2 Leptons
36(6)
4.2.1 Charged Leptons
36(1)
4.2.2 Neutrinos
36(6)
4.3 Hadrons
42(6)
4.3.1 The Standard Model Taxonomy of Hadrons
45(1)
4.3.2 Hadron Masses
45(1)
4.3.3 Hadron Angular Momenta
46(2)
4.4 Synopsis
48(3)
References
48(3)
5 The Equivalence Principle, Special Relativity, and Newton's Gravitational Law
51(16)
5.1 The Weak Equivalence Principle
51(2)
5.2 Special Relativity
53(8)
5.2.1 Implications of the Special Relativity: Length Contraction and Time Dilation
53(2)
5.2.2 Transformation of Velocities
55(1)
5.2.3 Accelerated Motions
56(1)
5.2.4 Forces in Relativistic Mechanics
57(4)
5.3 Newton's Universal Gravitational Law
61(1)
5.4 The Synthesis of Newton's Gravitational Law, Equivalence Principle, and Special Relativity
62(2)
5.5 Einstein's Equivalence Principle and Strong Equivalence Principle
64(1)
5.6 Synopsis
65(2)
References
65(2)
6 The Three and Two Rotating Neutrino Models: Particle Confinement by Gravity
67(18)
6.1 Requirements for a Satisfactory Hadron Formation Model
67(1)
6.2 The Inertial and Gravitational Mass of Fast Neutrinos
68(1)
6.3 The Three-Neutrino Model
69(9)
6.3.1 Equivalence Principle and Inertial Mass
70(2)
6.3.2 The Classical Mechanical Problem
72(1)
6.3.3 The de Broglie Wavelength Expression and Consistency with Quantum Mechanics
73(2)
6.3.4 Numerical Substitutions
75(3)
6.4 The Two-Neutrino Model
78(3)
6.5 Summarizing Remarks
81(1)
6.6 Synopsis
82(3)
References
82(3)
7 Energy and Other Properties of the Rotational States
85(16)
7.1 Potential, Translational, and Total Energy of the Neutrinos
85(3)
7.2 Properties of the Bound States
88(7)
7.2.1 Rest Energy and Binding Energy
88(1)
7.2.2 Radii and Lorentz Factors y
88(1)
7.2.3 Lifetimes and Rotational Periods
89(1)
7.2.4 Spins and Charges
89(2)
7.2.5 Magnetic Moments
91(1)
7.2.6 Inertial Mass and Angular Momentum
92(1)
7.2.7 Gravitational Force
93(1)
7.2.8 Summary of the Comparison with Experiment
94(1)
7.2.9 Gravitational Constant
95(1)
7.3 Energy-Curvature Dependence and General Relativity
95(2)
7.4 Model Consistency with General Relativity: Kerr Black Holes
97(1)
7.5 Synopsis
98(3)
References
99(2)
8 Gravitational Hadronization: How Mass Can Be Produced from Gravity
101(6)
8.1 The Generation of Rest Mass by the Kinetic Energy of the Constituents of a Confined State
101(3)
8.2 Thermodynamics of Neutrino and Quark-Gluon Plasma Condensation
104(1)
8.3 Synopsis
105(2)
References
105(2)
9 Model Comparison with the Main Experimental Features of the Strong Interaction Force
107(6)
9.1 Quarks, Gluons, and Color Charge
107(4)
9.1.1 Quarks
108(1)
9.1.2 Gluons
109(1)
9.1.3 Color Charge
109(1)
9.1.4 Confinement and Asymptotic Freedom
109(1)
9.1.5 Scattering Cross Sections and Hadron Jets
110(1)
9.2 Synopsis
111(2)
References
111(2)
10 The Bohr-de Broglie Approach in Physics: The Dual Nature of Matter
113(8)
10.1 Merits
113(3)
10.2 Limitations
116(1)
10.3 Charged Baryons
117(2)
10.4 Synopsis
119(2)
References
120(1)
11 Gravity at Relativistic Velocities and Dark Matter
121(6)
11.1 Dark Matter in Galaxies
121(1)
11.2 Newton's Gravitational Law and Special Relativity
121(1)
11.3 Virial Theorem and Dark Matter
122(1)
11.4 Alternate Explanations
123(1)
11.5 Gravity Modification
123(1)
11.6 Gravitational Mass
124(1)
11.7 Neutrinos in Space
125(1)
11.8 Synopsis
125(2)
References
125(2)
12 Force Unification: Is the Strong Force Simply Gravity?
127(12)
12.1 Coupling Constants: Facts and Expectations
127(2)
12.2 Gravitational Coupling Constants
129(5)
12.3 Synopsis
134(5)
References
135(2)
Epilogue
137(1)
References
138(1)
A Natural Constant Symbols and Values 139(2)
Index 141