Atjaunināt sīkdatņu piekrišanu

Great Prime Number Race [Mīkstie vāki]

  • Formāts: Paperback / softback, 152 pages, weight: 190 g
  • Sērija : Student Mathematical Library
  • Izdošanas datums: 30-Jan-2021
  • Izdevniecība: American Mathematical Society
  • ISBN-10: 1470462575
  • ISBN-13: 9781470462574
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 69,02 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 152 pages, weight: 190 g
  • Sērija : Student Mathematical Library
  • Izdošanas datums: 30-Jan-2021
  • Izdevniecība: American Mathematical Society
  • ISBN-10: 1470462575
  • ISBN-13: 9781470462574
Citas grāmatas par šo tēmu:
Have you ever wondered about the explicit formulas in analytic number theory? This short book provides a streamlined and rigorous approach to the explicit formulas of Riemann and von Mangoldt. The race between the prime counting function and the logarithmic integral forms a motivating thread through the narrative, which emphasizes the interplay between the oscillatory terms in the Riemann formula and the Skewes number, the least number for which the prime number theorem undercounts the number of primes. Throughout the book, there are scholarly references to the pioneering work of Euler. The book includes a proof of the prime number theorem and outlines a proof of Littlewood's oscillation theorem before finishing with the current best numerical upper bounds on the Skewes number. This book is a unique text that provides all the mathematical background for understanding the Skewes number. Many exercises are included, with hints for solutions. This book is suitable for anyone with a first course in complex analysis. Its engaging style and invigorating point of view will make refreshing reading for advanced undergraduates through research mathematicians.
Preface ix
Chapter 1 The Riemann zeta function
1(16)
§1.1 Introduction
1(2)
§1.2 The Riemann zeta function
3(1)
§1.3 The prime numbers
4(2)
§1.4 The Riemann zeta function
6(2)
§1.5 Euler and the zeta function
8(2)
§1.6 Meromorphic continuation of ζ(s)
10(7)
Chapter 2 The Euler product
17(10)
§2.1 The zeta function and the Euler product
17(3)
§2.2 The logarithmic derivative of ζ(s)
20(7)
Chapter 3 The functional equation
27(30)
§3.1 The gamma function
29(7)
§3.2 The functional equation
36(5)
§3.3 Some zeta values
41(2)
§3.4 Euler and the functional equation
43(4)
§3.5 The Euler constant revisited
47(10)
Chapter 4 The explicit formulas in analytic number theory
57(24)
§4.1 The von Mangoldt explicit formula
58(3)
§4.2 Can you hear the Riemann hypothesis?
61(2)
§4.3 Comparison with Fourier series
63(2)
§4.4 Proof of the von Mangoldt formula
65(4)
§4.5 The logarithmic integral Li(z)
69(4)
§4.6 The Riemann formula
73(5)
§4.7 Origin of the Riemann explicit formula
78(3)
Chapter 5 The prime number theorem
81(12)
§5.1 The Riemann-Ramanujan approximation
81(1)
§5.2 Proof of the prime number theorem
82(11)
Chapter 6 Oscillation of π(x) --- Li(x)
93(14)
§6.1 Littlewood's theorem
93(5)
§6.2 Lehman's theorem
98(9)
Chapter 7 The prime number race
107(6)
§7.1 On the logarithmic density
107(2)
§7.2 Upper bounds for the Skewes number
109(4)
Chapter 8 Exercises, hints, and selected solutions
113(20)
§8.1 Exercises
113(7)
§8.2 Hints and selected solutions
120(13)
Bibliography 133(4)
Index 137
Roger Plymen, Manchester University, United Kingdom