Preface |
|
ix | |
Acknowledgments |
|
xi | |
Introduction |
|
xiii | |
|
Symmetries and Conservation Laws |
|
|
1 | (22) |
|
Lagrangian and Hamiltonian Mechanics |
|
|
2 | (4) |
|
|
6 | (2) |
|
The Oscillator Spectrum: Creation and Annihilation Operators |
|
|
8 | (2) |
|
Coupled Oscillators: Normal Modes |
|
|
10 | (3) |
|
One-Dimensional Fields: Waves |
|
|
13 | (3) |
|
The Final Step: Lagrange-Hamilton Quantum Field Theory |
|
|
16 | (4) |
|
|
20 | (1) |
|
|
20 | (3) |
|
|
23 | (18) |
|
|
23 | (2) |
|
|
25 | (2) |
|
|
27 | (1) |
|
|
28 | (1) |
|
|
28 | (2) |
|
Addition of Angular Momenta |
|
|
30 | (2) |
|
Clebsch-Gordan Coefficients |
|
|
32 | (2) |
|
|
33 | (1) |
|
Matrix Representation of Direct (Outer, Kronecker) Products |
|
|
34 | (1) |
|
1/2 ⊗ 1/2 = 1 0 in Matrix Representation |
|
|
35 | (2) |
|
|
36 | (1) |
|
|
37 | (1) |
|
|
38 | (1) |
|
|
38 | (1) |
|
|
38 | (3) |
|
Tensors and Tensor Operators |
|
|
41 | (30) |
|
|
41 | (1) |
|
|
42 | (1) |
|
|
42 | (1) |
|
Contravariant Vectors (t → Index at Top) |
|
|
43 | (1) |
|
Covariant Vectors (Co = Goes Below) |
|
|
44 | (1) |
|
|
44 | (1) |
|
|
45 | (2) |
|
|
45 | (2) |
|
|
47 | (1) |
|
|
48 | (1) |
|
|
49 | (2) |
|
|
49 | (1) |
|
|
49 | (1) |
|
|
50 | (1) |
|
Connection with Quantum Mechanics |
|
|
51 | (4) |
|
|
51 | (1) |
|
|
52 | (1) |
|
|
52 | (1) |
|
|
53 | (2) |
|
Specification of Rotations |
|
|
55 | (1) |
|
Transformation of Scalar Wave Functions |
|
|
56 | (1) |
|
|
57 | (1) |
|
Consistency with the Angular Momentum Commutation Rules |
|
|
58 | (1) |
|
Rotation of Spinor Wave Function |
|
|
58 | (2) |
|
Orbital Angular Momentum (x × p) |
|
|
60 | (5) |
|
|
65 | (2) |
|
Dimensions of Projected Spaces |
|
|
67 | (1) |
|
Connection between the ``Mixed Spinor'' and the Adjoint (Regular) Representation |
|
|
67 | (1) |
|
Finite Angle Rotation of SO(3) Vector |
|
|
68 | (1) |
|
|
69 | (1) |
|
|
69 | (2) |
|
Special Relativity and the Physical Particle States |
|
|
71 | (24) |
|
|
71 | (1) |
|
The Clifford Algebra: Properties of γ Matrices |
|
|
72 | (2) |
|
Structure of the Clifford Algebra and Representation |
|
|
74 | (2) |
|
Lorentz Covariance of the Dirac Equation |
|
|
76 | (2) |
|
|
78 | (1) |
|
The Nonrelativistic Limit |
|
|
79 | (1) |
|
Poincare Group: Inhomogeneous Lorentz Group |
|
|
80 | (2) |
|
Homogeneous (Later Restricted) Lorentz Group |
|
|
82 | (2) |
|
|
84 | (4) |
|
|
88 | (1) |
|
The Casimir Operators and the States |
|
|
89 | (4) |
|
|
93 | (1) |
|
|
93 | (2) |
|
|
95 | (12) |
|
|
105 | (1) |
|
|
105 | (2) |
|
Lie Group Techniques for the Standard Model Lie Groups |
|
|
107 | (18) |
|
|
108 | (3) |
|
|
111 | (2) |
|
|
113 | (1) |
|
|
113 | (2) |
|
|
115 | (1) |
|
|
116 | (1) |
|
|
117 | (1) |
|
|
117 | (2) |
|
The Classification Theorem (Dynkin) |
|
|
119 | (1) |
|
|
119 | (1) |
|
|
119 | (1) |
|
|
120 | (1) |
|
|
120 | (5) |
|
Noether's Theorem and Gauge Theories of the First and Second Kinds |
|
|
125 | (6) |
|
|
129 | (1) |
|
|
129 | (2) |
|
Basic Couplings of the Electromagnetic, Weak, and Strong Interactions |
|
|
131 | (8) |
|
|
136 | (1) |
|
|
136 | (3) |
|
Spontaneous Symmetry Breaking and the Unification of the Electromagnetic and Weak Forces |
|
|
139 | (8) |
|
|
144 | (1) |
|
|
145 | (2) |
|
The Goldstone Theorem and the Consequent Emergence of Nonlinearly Transforming Massless Goldstone Bosons |
|
|
147 | (6) |
|
|
151 | (1) |
|
|
151 | (2) |
|
The Higgs Mechanism and the Emergence of Mass from Spontaneously Broken Symmetries |
|
|
153 | (4) |
|
|
155 | (1) |
|
|
155 | (2) |
|
Lie Group Techniques for beyond the Standard Model Lie Groups |
|
|
157 | (4) |
|
|
159 | (1) |
|
|
160 | (1) |
|
|
161 | (24) |
|
|
181 | (1) |
|
|
182 | (3) |
|
Beyond the Standard Model |
|
|
185 | (44) |
|
|
188 | (1) |
|
|
188 | (1) |
|
|
189 | (1) |
|
Weyl Spinors and Representation |
|
|
190 | (2) |
|
Charge Conjugation and Majorana Spinor |
|
|
192 | (2) |
|
|
194 | (1) |
|
|
194 | (1) |
|
|
195 | (1) |
|
Supersymmetry: A First Look at the Simplest (N = 1) Case |
|
|
196 | (1) |
|
|
197 | (2) |
|
|
199 | (1) |
|
|
200 | (1) |
|
Three-Dimensional Euclidean Space (Revisited) |
|
|
200 | (7) |
|
Covariant Derivative Operators from Right Action |
|
|
207 | (2) |
|
|
209 | (2) |
|
|
211 | (1) |
|
|
211 | (1) |
|
The Chiral Scalar Multiplet |
|
|
212 | (1) |
|
|
213 | (1) |
|
Covariant Definition of Component Fields |
|
|
214 | (1) |
|
|
214 | (3) |
|
Invariants and Lagrangians |
|
|
217 | (3) |
|
|
220 | (1) |
|
|
221 | (4) |
|
|
225 | (1) |
|
|
225 | (4) |
Index |
|
229 | |