Atjaunināt sīkdatņu piekrišanu

E-grāmata: Guaranteed Estimation Problems in the Theory of Linear Ordinary Differential Equations with Uncertain Data

  • Formāts: 300 pages
  • Izdošanas datums: 01-Sep-2022
  • Izdevniecība: River Publishers
  • ISBN-13: 9781000795134
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 120,22 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 300 pages
  • Izdošanas datums: 01-Sep-2022
  • Izdevniecība: River Publishers
  • ISBN-13: 9781000795134
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This monograph is devoted to the construction of optimal estimates of values of linear functionals on solutions to Cauchy and two-point boundary value problems for systems of linear first-order ordinary differential equations, from indirect observations which are linear transformations of the same solutions perturbed by additive random noises.

This monograph is devoted to the construction of optimal estimates of values of linear functionals on solutions to Cauchy and two-point boundary value problems for systems of linear first-order ordinary differential equations, from indirect observations which are linear transformations of the same solutions perturbed by additive random noises. It is assumed that right-hand sides of equations and boundary data as well as statistical characteristics of random noises in observations are not known and belong to certain given sets in corresponding functional spaces. This leads to the necessity of introducing the minimax statement of an estimation problem when optimal estimates are defined as linear, with respect to observations, estimates for which the maximum of mean square error of estimation taken over the above-mentioned sets attains minimal value. Such estimates are called minimax or guaranteed estimates. It is established that these estimates are expressed explicitly via solutions to some uniquely solvable linear systems of ordinary differential equations of the special type. The authors apply these results for obtaining the optimal estimates of solutions from indirect noisy observations.

Similar estimation problems for solutions of boundary value problems for linear differential equations of order with general boundary conditions are considered. The authors also elaborate guaranteed estimation methods under incomplete data of unknown right-hand sides of equations and boundary data and obtain representations for the corresponding guaranteed estimates. In all the cases estimation errors are determined.

This monograph is devoted to the construction of optimal estimates of values of linear functionals on solutions to Cauchy and two-point boundary value problems for systems of linear first-order ordinary differential equations, from indirect observations which are linear transformations of the same solutions perturbed by additive random noises. It is assumed that right-hand sides of equations and boundary data as well as statistical characteristics of random noises in observations are not known and belong to certain given sets in corresponding functional spaces. This leads to the necessity of introducing the minimax statement of an estimation problem when optimal estimates are defined as linear, with respect to observations, estimates for which the maximum of mean square error of estimation taken over the above-mentioned sets attains minimal value. Such estimates are called minimax or guaranteed estimates. It is established that these estimates are expressed explicitly via solutions to some uniquely solvable linear systems of ordinary differential equations of the special type. The authors apply these results for obtaining the optimal estimates of solutions from indirect noisy observations.

Similar estimation problems for solutions of boundary value problems for linear differential equations of order n with general boundary conditions are considered. The authors also elaborate guaranteed estimation methods under incomplete data of unknown right-hand sides of equations and boundary data and obtain representations for the corresponding guaranteed estimates. In all the cases estimation errors are determined.



This monograph is devoted to the construction of optimal estimates of values of linear functionals on solutions to Cauchy and two-point boundary value problems for systems of linear first-order ordinary differential equations, from indirect observations which are linear transformations of the same solutions perturbed.

Preface vii
Introduction 1(4)
1 Guaranteed Estimates of Solutions and Right-Hand Sides of the Cauchy Problem Under Incomplete Data
5(74)
1.1 Preliminaries and Auxiliary Results
5(2)
1.2 Statement of the Estimation Problem
7(3)
1.3 Minimax Estimation of Functionals From Solutions of the Cauchy Problem
10(20)
1.4 σ1-Optimal Estimates of Unknown Solution of the Cauchy Problem
30(3)
1.5 Representations of Guaranteed Estimates of Functionals
33(4)
1.6 Minimax Estimation of the Right-Hand Sides of Equalities that Enter
37(10)
1.7 Guaranteed Estimation of Solutions to the Cauchy Problem
47(11)
1.8 Guaranteed Predictive Estimation of Solutions to the Cauchy Problem
58(21)
2 Guaranteed Estimation of Unknown Solutions and Right-Hand Sides of First Order Linear Systems of Periodic ODEs
79(24)
2.1 Guaranteed Estimation of Solutions of First Order Linear Systems
79(10)
2.2 Guaranteed Recovery of Unknown Right-Hand Sides
89(3)
2.3 Guaranteed a Posteriori Estimation of Unknown Right-Hand Sides
92(11)
3 Guaranteed Estimation of Solutions of Boundary Value Problems for Linear Ordinary Differential Equations with Decomposed Boundary Data
103(60)
3.1 Preliminaries and Auxiliary Results
103(12)
3.2 Statement of the Minimax Estimation Problem and Its Reduction
115(10)
3.3 Representations for Minimax Estimates of Functionals from Solutions
125(15)
3.4 Minimax Estimates of Solutions Subject to Incomplete Restrictions
140(5)
3.5 Elimination Technique in Minimax Estimation Problems
145(9)
3.6 Minimax Estimation of the Solutions to the Boundary Value Problems
154(6)
3.7 Results of Numerical Experiments
160(3)
4 Guaranteed Estimation of Parameters of Boundary Value Problems for Linear Ordinary Differential Equations with General Boundary Data
163(54)
4.1 Auxiliary Results
163(4)
4.2 Statement of the Estimation Problem of Solutions
167(2)
4.3 Representations for Minimax Estimates of the Values of Functionals
169(22)
4.4 Minimax Estimation of Functionals from Right-Hand Sides
191(13)
4.5 Minimax Estimation of Functionals from Solutions
204(1)
4.6 Auxiliary Results
204(3)
4.7 Statement of Estimation Problem
207(1)
4.8 Theorems on the General form of Minimax Estimates
208(6)
4.9 Estimation Problems of Functionals from Unknown Data
214(3)
References 217(4)
Index 221(2)
About the Authors 223
Oleksandr Nakonechnyi, Yuri Podlipenko