Preface |
|
v | |
|
|
1 | (110) |
|
|
3 | (30) |
|
|
3 | (2) |
|
1.2 Holomorphic Functions |
|
|
5 | (6) |
|
1.3 Singularities of Holomorphic Functions |
|
|
11 | (10) |
|
1.4 The Riemann Sphere and the Point at Infinity |
|
|
21 | (4) |
|
|
25 | (5) |
|
|
30 | (3) |
|
|
33 | (28) |
|
2.1 Curves in the Complex Plane |
|
|
33 | (4) |
|
2.2 Line Integral of a Function Along a Curve |
|
|
37 | (4) |
|
|
41 | (4) |
|
2.4 Primitive of a Holomorphic Function |
|
|
45 | (3) |
|
2.5 Holomorphic Functions, Differential Forms and Vector Fields |
|
|
48 | (2) |
|
2.6 Cauchy's Integral Formula |
|
|
50 | (2) |
|
2.7 Morera's Theorem for a Simply Connected Domain |
|
|
52 | (1) |
|
2.8 Other Properties of Holomorphic Functions |
|
|
53 | (3) |
|
|
56 | (2) |
|
|
58 | (3) |
|
3 Taylor and Laurent Series |
|
|
61 | (26) |
|
|
61 | (3) |
|
|
64 | (5) |
|
|
69 | (6) |
|
3.4 Analytic Continuation |
|
|
75 | (10) |
|
|
85 | (2) |
|
|
87 | (24) |
|
4.1 Residue of a Function at an Isolated Singularity |
|
|
87 | (3) |
|
|
90 | (4) |
|
4.3 Evaluation of Integrals by Residue Method |
|
|
94 | (10) |
|
4.4 Cauchy's Principal Value |
|
|
104 | (3) |
|
|
107 | (4) |
|
PART II Functional Spaces |
|
|
111 | (146) |
|
|
113 | (24) |
|
|
113 | (3) |
|
5.2 Metric, Norm and Scalar Product |
|
|
116 | (8) |
|
|
124 | (1) |
|
5.4 Finite-Dimensional Hilbert Spaces |
|
|
125 | (3) |
|
|
128 | (4) |
|
5.6 The Orthogonal Complement |
|
|
132 | (2) |
|
|
134 | (3) |
|
|
137 | (16) |
|
6.1 Different Norms and Different Notions of Convergence |
|
|
138 | (2) |
|
6.2 The Space L1ω(Omega;) |
|
|
140 | (4) |
|
6.3 The Hilbert Space L2ω(Omega;) |
|
|
144 | (2) |
|
6.4 Hilbert Basis and Fourier Expansion |
|
|
146 | (5) |
|
|
151 | (2) |
|
|
153 | (22) |
|
|
153 | (3) |
|
|
156 | (7) |
|
7.3 Limits of Distributions |
|
|
163 | (2) |
|
7.4 Operations on Distributions |
|
|
165 | (8) |
|
|
173 | (2) |
|
|
175 | (26) |
|
|
176 | (8) |
|
8.2 The Fourier Transform |
|
|
184 | (13) |
|
|
197 | (4) |
|
9 Linear Operators in Hilbert Spaces I: The Finite-Dimensional Case |
|
|
201 | (22) |
|
9.1 Linear Operators in Finite Dimension |
|
|
201 | (6) |
|
|
207 | (13) |
|
|
220 | (3) |
|
10 Linear Operators in Hilbert Spaces II: The Infinite-Dimensional Case |
|
|
223 | (34) |
|
10.1 Operators in Normed Spaces |
|
|
224 | (5) |
|
10.2 Operators in Hilbert Spaces |
|
|
229 | (8) |
|
10.3 Eigenvalues and Spectral Theory |
|
|
237 | (16) |
|
|
253 | (4) |
|
|
257 | (2) |
|
Appendix A Complex Numbers, Series and Integrals |
|
|
259 | (10) |
|
A.1 A Quick Review of Complex Numbers |
|
|
259 | (2) |
|
A.2 Notions of Topology, Sequences and Series |
|
|
261 | (3) |
|
A.3 The Lebesgue Integral |
|
|
264 | (5) |
|
Appendix B Solutions of the Exercises |
|
|
269 | (52) |
Bibliography |
|
321 | (2) |
Index |
|
323 | |