|
1 Introduction to Digital Image |
|
|
1 | (42) |
|
1.1 Formation of an Image |
|
|
1 | (2) |
|
|
3 | (3) |
|
1.3 Analog and Digital Image as 2D Signal |
|
|
6 | (8) |
|
1.3.1 Continuous Time Continuous Valued Electrical Signal |
|
|
7 | (1) |
|
1.3.2 Continuous Space Continuous Intensity (CSCI) Image |
|
|
7 | (1) |
|
1.3.3 Sampling: Discrete Time Continuous Valued (DTCV) Electrical Signal |
|
|
8 | (1) |
|
1.3.4 Concept of Sampling in Images (2D Signal) |
|
|
9 | (1) |
|
1.3.5 Quantization: Discrete Time Discrete Valued (DTDV) Electrical Signal |
|
|
10 | (2) |
|
1.3.6 Quantization in Images (2D Signal) |
|
|
12 | (2) |
|
1.3.7 Encoding in Images (2D Signal) |
|
|
14 | (1) |
|
1.4 Relationships Between Pixels |
|
|
14 | (4) |
|
|
14 | (2) |
|
|
16 | (1) |
|
|
16 | (2) |
|
1.5 Geometric Transformations |
|
|
18 | (13) |
|
|
18 | (3) |
|
|
21 | (1) |
|
|
22 | (3) |
|
1.5.4 Homogeneous Transformation |
|
|
25 | (2) |
|
1.5.5 Concatenation of Transformation |
|
|
27 | (3) |
|
1.5.6 Affine Transformation |
|
|
30 | (1) |
|
|
31 | (5) |
|
1.6.1 Transformed Domain Simplicity |
|
|
33 | (2) |
|
1.6.2 2D Convolution: Convolution in Image Processing |
|
|
35 | (1) |
|
|
36 | (4) |
|
1.7.1 Case Study: Pattern (Shape Feature) Matching Between Two Objects Using Cross-Correlation |
|
|
37 | (3) |
|
|
40 | (3) |
|
1.8.1 Sampling of a Sweep Image |
|
|
40 | (1) |
|
1.8.2 Resolution of Image |
|
|
40 | (1) |
|
1.8.3 Quantization of Image |
|
|
41 | (1) |
|
1.8.4 Correlation Subroutine |
|
|
42 | (1) |
|
|
42 | (1) |
|
2 Image Enhancement in Spatial Domain |
|
|
43 | (50) |
|
2.1 Intensity Transformations |
|
|
44 | (5) |
|
2.1.1 Linear Transformation |
|
|
44 | (2) |
|
2.1.2 Contrast Stretching and Thresholding |
|
|
46 | (1) |
|
2.1.3 Negative Intensity Transform |
|
|
46 | (1) |
|
2.1.4 Logarithmic Intensity Transformation |
|
|
46 | (1) |
|
2.1.5 Power-Law Intensity Transform and Gamma Correction |
|
|
47 | (2) |
|
2.2 Histogram of an Image |
|
|
49 | (3) |
|
|
51 | (1) |
|
|
51 | (1) |
|
2.3 Histogram Equalization and Histogram Specification |
|
|
52 | (6) |
|
|
58 | (5) |
|
|
58 | (3) |
|
2.4.2 Ordered Statistics Filter |
|
|
61 | (2) |
|
|
63 | (5) |
|
2.5.1 Image Sharpening by Gradient Mask: First-Order Derivative |
|
|
65 | (2) |
|
2.5.2 Image Sharpening by Laplacian mask: Second-Order Derivative |
|
|
67 | (1) |
|
2.6 Image Interpolation and Resampling |
|
|
68 | (20) |
|
|
72 | (2) |
|
2.6.2 Interpolation of 1D Signal by B-Spline |
|
|
74 | (6) |
|
2.6.3 Interpolation of 2D Image |
|
|
80 | (8) |
|
|
88 | (5) |
|
2.7.1 Image Transformation Without Interpolation |
|
|
88 | (1) |
|
2.7.2 Image Rotation with Different Interpolation Techniques |
|
|
89 | (1) |
|
2.7.3 Mean and Median Filter Response on Noisy Image |
|
|
90 | (1) |
|
2.7.4 Image Sharpening by Laplacian Mask |
|
|
91 | (1) |
|
|
91 | (2) |
|
3 Interpretation and Processing of Image in Frequency Domain |
|
|
93 | (56) |
|
3.1 Concept of Frequency in Image |
|
|
94 | (6) |
|
|
94 | (5) |
|
3.1.2 Interpretation and Direction of Frequency in Image |
|
|
99 | (1) |
|
3.2 Phase Congruency and Edge Detection in an Image |
|
|
100 | (6) |
|
3.3 Fourier Transform for Continuous and Discrete Time Signals |
|
|
106 | (4) |
|
3.3.1 Discrete Time Fourier Transform |
|
|
107 | (2) |
|
|
109 | (1) |
|
|
110 | (2) |
|
3.5 Translation and Scaling Properties of 2D Fourier Transform |
|
|
112 | (8) |
|
3.5.1 Translation: Dragging the LF (DC) Component at the Center of the 2D Spectra |
|
|
112 | (2) |
|
3.5.2 Scaling: Space-Frequency Relationship in Image |
|
|
114 | (6) |
|
3.6 Concept of Image Filtering in Frequency Domain |
|
|
120 | (4) |
|
|
124 | (6) |
|
|
125 | (1) |
|
|
126 | (3) |
|
|
129 | (1) |
|
|
130 | (6) |
|
|
132 | (1) |
|
|
133 | (2) |
|
|
135 | (1) |
|
|
136 | (7) |
|
3.9.1 Importance of Phase over Amplitude in DFT Spectrum |
|
|
136 | (2) |
|
|
138 | (5) |
|
|
143 | (6) |
|
3.10.1 Ideal 2D Filters in Frequency Domain |
|
|
143 | (2) |
|
3.10.2 Subroutine of 2D Butterworth Filter |
|
|
145 | (1) |
|
3.10.3 Subroutine of 2D Gaussian Filter |
|
|
145 | (1) |
|
3.10.4 Importance of Phase over Amplitude in Image Spectrum |
|
|
146 | (1) |
|
|
147 | (2) |
|
4 Color Science and Color Technology |
|
|
149 | (42) |
|
4.1 Light and Primary Colors |
|
|
149 | (9) |
|
4.1.1 Device-Dependent Primary Colors: Additive Color Model |
|
|
151 | (1) |
|
4.1.2 Device-Dependent Primary Colors: Subtractive Color Model |
|
|
152 | (2) |
|
4.1.3 Reflectance and Its Spectra |
|
|
154 | (4) |
|
4.2 Psycho-Visual Color: Human Vision System |
|
|
158 | (3) |
|
4.2.1 Photoreceptors: Rods and Cones |
|
|
158 | (3) |
|
4.3 Color Description Systems |
|
|
161 | (5) |
|
|
162 | (1) |
|
|
163 | (3) |
|
4.4 Colorimetry: CIE Standards |
|
|
166 | (4) |
|
4.4.1 CIE Standard Illuminant |
|
|
167 | (2) |
|
4.4.2 CIE Standard Observer |
|
|
169 | (1) |
|
|
170 | (7) |
|
4.5.1 Non-uniform Perceptual Color Spaces |
|
|
171 | (3) |
|
4.5.2 Uniform Perceptual Color Spaces |
|
|
174 | (2) |
|
4.5.3 Xerox/YES Color Space |
|
|
176 | (1) |
|
|
177 | (4) |
|
4.6.1 Moire Pattern and Screen Angle |
|
|
178 | (1) |
|
4.6.2 Growth Sequence of Halftone Dot |
|
|
179 | (2) |
|
|
181 | (8) |
|
4.7.1 Profile Connection Space (PCS) |
|
|
184 | (1) |
|
|
184 | (1) |
|
|
185 | (4) |
|
|
189 | (2) |
|
4.8.1 Halftone Screening by Error Diffusion |
|
|
189 | (1) |
|
4.8.2 Error Diffusion Subroutine |
|
|
190 | (1) |
|
|
190 | (1) |
|
5 Wavelets: Multiresolution Image Processing |
|
|
191 | (32) |
|
|
191 | (1) |
|
5.2 Short-Time Fourier Transform |
|
|
191 | (5) |
|
5.2.1 Continuous-time STFT |
|
|
194 | (1) |
|
|
194 | (1) |
|
|
194 | (1) |
|
|
195 | (1) |
|
5.3 Wavelet Function and Scaling Function |
|
|
196 | (6) |
|
|
202 | (1) |
|
5.5 Discrete Wavelet Transform and Multiresolution analysis |
|
|
203 | (4) |
|
5.5.1 Analysis Filter Bank |
|
|
205 | (1) |
|
5.5.2 Synthesis Filter Bank |
|
|
206 | (1) |
|
5.6 Image Decomposition Using DWT |
|
|
207 | (3) |
|
5.6.1 Concept of 2D Signal Decomposition Using Analysis Filter |
|
|
207 | (1) |
|
5.6.2 DWT on Images (Fig. 5.16) |
|
|
208 | (2) |
|
5.7 Image Compression Using DWT: EZW Encoding |
|
|
210 | (8) |
|
5.7.1 Relationship Between Decomposed Sub-bands |
|
|
211 | (1) |
|
5.7.2 Successive Approximation Quantization in EZW |
|
|
212 | (1) |
|
5.7.3 EZW Encoding Algorithm |
|
|
213 | (1) |
|
5.7.4 Image Compression using EZW: An Example |
|
|
214 | (2) |
|
5.7.5 Experimental Results of Image Compression Using EZW |
|
|
216 | (2) |
|
|
218 | (5) |
|
5.8.1 Haar Scaling and Wavelet Function |
|
|
218 | (1) |
|
5.8.2 Wavelet Series Expansion |
|
|
219 | (1) |
|
5.8.3 Wavelet Decomposition of Image (4 level) |
|
|
220 | (1) |
|
5.8.4 Image Compression by EZW Encoding |
|
|
221 | (1) |
|
|
221 | (2) |
|
6 Compression and Encoding of Image: Image Formats |
|
|
223 | (46) |
|
6.1 Redundancy: Fundamentals of Compression |
|
|
224 | (2) |
|
6.2 Entropy: The Measure of Information |
|
|
226 | (1) |
|
|
227 | (3) |
|
6.3.1 Shannon--Fano Coding |
|
|
228 | (1) |
|
|
229 | (1) |
|
|
230 | (6) |
|
6.4.1 Block Truncation Compression (BTC) |
|
|
230 | (3) |
|
6.4.2 Vector Quantization Compression (VQC) |
|
|
233 | (3) |
|
|
236 | (2) |
|
6.5.1 Run Length Coding (RLC) |
|
|
236 | (1) |
|
|
237 | (1) |
|
6.6 QPAC: Quality Preserving Adaptive Compression |
|
|
238 | (1) |
|
6.7 Some Common Image Formats |
|
|
239 | (19) |
|
6.7.1 C ++ Code for Reading BMP Image |
|
|
240 | (5) |
|
|
245 | (9) |
|
|
254 | (4) |
|
6.8 Matlab Codes and Pseudocodes |
|
|
258 | (11) |
|
6.8.1 Block Truncation Compression (BTC) |
|
|
258 | (3) |
|
|
261 | (5) |
|
6.8.3 GIF: LZW Compression |
|
|
266 | (1) |
|
6.8.4 GIF: LZW Decompression |
|
|
267 | (1) |
|
|
267 | (2) |
|
7 Morphology-Based Image Processing |
|
|
269 | (30) |
|
|
269 | (2) |
|
7.2 Logic Operations on Binary Images |
|
|
271 | (2) |
|
|
273 | (6) |
|
|
273 | (3) |
|
|
276 | (3) |
|
|
279 | (1) |
|
|
280 | (1) |
|
7.6 Morphological Algorithms for Feature Extraction |
|
|
280 | (13) |
|
7.6.1 Boundary Extraction |
|
|
282 | (1) |
|
|
283 | (1) |
|
|
284 | (1) |
|
|
285 | (1) |
|
|
286 | (2) |
|
|
288 | (1) |
|
|
289 | (1) |
|
|
290 | (3) |
|
|
293 | (3) |
|
|
293 | (2) |
|
|
295 | (1) |
|
|
295 | (1) |
|
|
296 | (3) |
|
|
296 | (1) |
|
|
297 | (1) |
|
|
297 | (1) |
|
|
298 | (1) |
|
8 Patterns in Images and Their Applications |
|
|
299 | (42) |
|
8.1 Introduction to Pattern |
|
|
299 | (1) |
|
|
300 | (2) |
|
8.2.1 Feature Selection and Extraction |
|
|
301 | (1) |
|
8.3 Principal Component Analysis |
|
|
302 | (6) |
|
|
303 | (2) |
|
8.3.2 Application of PC A in Face Recognition |
|
|
305 | (2) |
|
8.3.3 Limitations of PCA-Based Face Recognition |
|
|
307 | (1) |
|
8.4 Face Detection Based on Haar-Like Features |
|
|
308 | (3) |
|
8.5 Elastic Branch Graph Matching and Face Manifold |
|
|
311 | (3) |
|
8.6 Decision Tree and Feature Hierarchy |
|
|
314 | (5) |
|
|
314 | (1) |
|
8.6.2 Information Gain Ratio |
|
|
315 | (1) |
|
8.6.3 Selection of Optimized Set of Features |
|
|
316 | (1) |
|
8.6.4 Feature Hierarchy for Gabor Features in Face Recognition |
|
|
317 | (2) |
|
8.7 Scale Invariant Feature Transform |
|
|
319 | (13) |
|
8.7.1 Scale-Space Concept: Multiscale Singularity Tree |
|
|
320 | (2) |
|
8.7.2 SIFT: Representation of Image in Scale--Space |
|
|
322 | (2) |
|
8.7.3 SIFT: Detection of Local Scale--Space Extrema |
|
|
324 | (1) |
|
8.7.4 SIFT: Accurate Keypoint Localization |
|
|
325 | (1) |
|
8.7.5 SIFT: Orientation Assignment |
|
|
326 | (1) |
|
8.7.6 SIFT: Keypoint Descriptor |
|
|
327 | (1) |
|
|
328 | (4) |
|
8.8 Histogram of Oriented Gradient |
|
|
332 | (4) |
|
8.8.1 HOG: Dividing Image into Blocks |
|
|
333 | (1) |
|
8.8.2 HOG: Quantization of Gradient Histogram |
|
|
333 | (2) |
|
8.8.3 HOG: Feature Vector Synthesis |
|
|
335 | (1) |
|
8.8.4 HOG: Design of Classifier by Training |
|
|
335 | (1) |
|
|
336 | (5) |
|
8.9.1 PCA of a 2D data set |
|
|
336 | (1) |
|
8.9.2 Scale--Space: Multiscale Singularity Tree |
|
|
337 | (1) |
|
|
338 | (3) |
|
9 Psycho-visual pattern recognition: Computer Vision |
|
|
341 | (24) |
|
|
341 | (1) |
|
|
342 | (5) |
|
9.2.1 On-Center Off-Surround |
|
|
343 | (1) |
|
9.2.2 Off-Center On-Surround |
|
|
344 | (1) |
|
9.2.3 Edge Detection in Retinal Receptive Field |
|
|
345 | (2) |
|
9.3 Modeling of Retinal Receptive Field from Optical Illusions |
|
|
347 | (5) |
|
9.3.1 Optical Illusions: A study |
|
|
347 | (1) |
|
9.3.2 Illustration of the Illusions in Terms of DoG Model of Retinal Receptive Field |
|
|
348 | (4) |
|
9.4 Three Levels of Psycho-Visual System for Pattern Recognition |
|
|
352 | (1) |
|
9.5 Neuro-Visually Inspired Figure-Ground Segregation |
|
|
353 | (5) |
|
9.5.1 The Detailed Algorithm for NFGS |
|
|
355 | (3) |
|
9.6 "Where" and "What" Visual Pathways: Modeling in Computer Vision |
|
|
358 | (7) |
|
|
362 | (3) |
|
10 Appendix A: Digital Differentiation and Edge Detection |
|
|
365 | (18) |
|
|
365 | (1) |
|
10.2 Digital Differentiation |
|
|
366 | (3) |
|
10.2.1 Digital Differentiation of One-Dimensional (1D) Signal |
|
|
367 | (2) |
|
10.3 Digital Differentiation for Edge Detection |
|
|
369 | (2) |
|
10.4 Convolution and Correlation for Edge Detection |
|
|
371 | (3) |
|
10.5 Prewitt and Sobel Mask for Edge Detection of Digital Image |
|
|
374 | (1) |
|
|
375 | (3) |
|
|
375 | (1) |
|
10.6.2 Non-Maxima Suppression |
|
|
376 | (1) |
|
10.6.3 Hysteresis Thresholding |
|
|
376 | (2) |
|
|
378 | (5) |
|
10.7.1 Digital Differentiation of 1D Signal |
|
|
378 | (1) |
|
10.7.2 Detection of Edges in Orthogonal Directions by Convolution Interpretation of Digital Differentiation |
|
|
379 | (2) |
|
|
381 | (2) |
|
11 Appendix B: Elementary Probability Theory |
|
|
383 | (16) |
|
11.1 Concept of Probability |
|
|
385 | (1) |
|
11.1.1 Random Experiments and Sample Space |
|
|
385 | (1) |
|
|
385 | (1) |
|
11.1.3 Probability: Understanding Approaches |
|
|
386 | (1) |
|
|
386 | (1) |
|
11.3 Mean, Variance, Skewness, and Kurtosis |
|
|
387 | (2) |
|
11.4 Cumulative Distribution Function |
|
|
389 | (3) |
|
11.5 Probability Density Function |
|
|
392 | (1) |
|
|
393 | (1) |
|
11.6 Frequently Used Probability Distribution |
|
|
393 | (6) |
|
|
397 | (2) |
|
12 Appendix C: Frequently Used MATLAB Functions |
|
|
399 | (14) |
|
|
399 | (1) |
|
|
399 | (1) |
|
|
399 | (1) |
|
|
400 | (1) |
|
|
400 | (1) |
|
|
400 | (1) |
|
|
401 | (1) |
|
|
401 | (1) |
|
|
401 | (1) |
|
|
401 | (1) |
|
|
402 | (1) |
|
|
402 | (1) |
|
|
402 | (1) |
|
|
402 | (1) |
|
|
403 | (1) |
|
12.8 Two-Dimensional Convolution |
|
|
403 | (1) |
|
|
404 | (1) |
|
|
405 | (1) |
|
|
405 | (1) |
|
|
406 | (1) |
|
|
406 | (1) |
|
|
406 | (1) |
|
|
407 | (1) |
|
|
407 | (1) |
|
|
407 | (1) |
|
|
407 | (2) |
|
|
407 | (1) |
|
|
408 | (1) |
|
|
409 | (3) |
|
|
409 | (1) |
|
|
410 | (2) |
|
12.16 Fourier Synthesizer GUI |
|
|
412 | (1) |
|
|
412 | (1) |
Index |
|
413 | |