Atjaunināt sīkdatņu piekrišanu

E-grāmata: Guide to Signals and Patterns in Image Processing: Foundations, Methods and Applications

  • Formāts: PDF+DRM
  • Izdošanas datums: 22-Apr-2015
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783319141725
  • Formāts - PDF+DRM
  • Cena: 53,52 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Izdošanas datums: 22-Apr-2015
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783319141725

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This text reviews the field of digital image processing from the different perspectives offered by the separate domains of signal processing and pattern recognition. The book describes a rich array of applications, representing the latest trends in industry and academic research. To inspire further interest in the field, a selection of worked-out numerical problems is also included in the text. The content is presented in an accessible manner, examining each topic in depth without assuming any prior knowledge from the reader, and providing additional background material in the appendices. Features: covers image enhancement techniques in the spatial domain, the frequency domain, and the wavelet domain; reviews compression methods and formats for encoding images; discusses morphology-based image processing; investigates the modeling of object recognition in the human visual system; provides supplementary material, including MATLAB and C++ code, and interactive GUI-based modules, at an associated website.
1 Introduction to Digital Image
1(42)
1.1 Formation of an Image
1(2)
1.2 Definition of Signal
3(3)
1.3 Analog and Digital Image as 2D Signal
6(8)
1.3.1 Continuous Time Continuous Valued Electrical Signal
7(1)
1.3.2 Continuous Space Continuous Intensity (CSCI) Image
7(1)
1.3.3 Sampling: Discrete Time Continuous Valued (DTCV) Electrical Signal
8(1)
1.3.4 Concept of Sampling in Images (2D Signal)
9(1)
1.3.5 Quantization: Discrete Time Discrete Valued (DTDV) Electrical Signal
10(2)
1.3.6 Quantization in Images (2D Signal)
12(2)
1.3.7 Encoding in Images (2D Signal)
14(1)
1.4 Relationships Between Pixels
14(4)
1.4.1 Neighborhood
14(2)
1.4.2 Adjacency
16(1)
1.4.3 Distance Measures
16(2)
1.5 Geometric Transformations
18(13)
1.5.1 Translation
18(3)
1.5.2 Scaling
21(1)
1.5.3 Rotation
22(3)
1.5.4 Homogeneous Transformation
25(2)
1.5.5 Concatenation of Transformation
27(3)
1.5.6 Affine Transformation
30(1)
1.6 Convolution
31(5)
1.6.1 Transformed Domain Simplicity
33(2)
1.6.2 2D Convolution: Convolution in Image Processing
35(1)
1.7 Correlation
36(4)
1.7.1 Case Study: Pattern (Shape Feature) Matching Between Two Objects Using Cross-Correlation
37(3)
1.8 MATLAB Codes
40(3)
1.8.1 Sampling of a Sweep Image
40(1)
1.8.2 Resolution of Image
40(1)
1.8.3 Quantization of Image
41(1)
1.8.4 Correlation Subroutine
42(1)
Reference
42(1)
2 Image Enhancement in Spatial Domain
43(50)
2.1 Intensity Transformations
44(5)
2.1.1 Linear Transformation
44(2)
2.1.2 Contrast Stretching and Thresholding
46(1)
2.1.3 Negative Intensity Transform
46(1)
2.1.4 Logarithmic Intensity Transformation
46(1)
2.1.5 Power-Law Intensity Transform and Gamma Correction
47(2)
2.2 Histogram of an Image
49(3)
2.2.1 Skewness
51(1)
2.2.2 Kurtosis
51(1)
2.3 Histogram Equalization and Histogram Specification
52(6)
2.4 Image Smoothing
58(5)
2.4.1 Mean Filter
58(3)
2.4.2 Ordered Statistics Filter
61(2)
2.5 Image Sharpening
63(5)
2.5.1 Image Sharpening by Gradient Mask: First-Order Derivative
65(2)
2.5.2 Image Sharpening by Laplacian mask: Second-Order Derivative
67(1)
2.6 Image Interpolation and Resampling
68(20)
2.6.1 B-Spline Function
72(2)
2.6.2 Interpolation of 1D Signal by B-Spline
74(6)
2.6.3 Interpolation of 2D Image
80(8)
2.7 MATLAB codes
88(5)
2.7.1 Image Transformation Without Interpolation
88(1)
2.7.2 Image Rotation with Different Interpolation Techniques
89(1)
2.7.3 Mean and Median Filter Response on Noisy Image
90(1)
2.7.4 Image Sharpening by Laplacian Mask
91(1)
Reference
91(2)
3 Interpretation and Processing of Image in Frequency Domain
93(56)
3.1 Concept of Frequency in Image
94(6)
3.1.1 Fourier Series
94(5)
3.1.2 Interpretation and Direction of Frequency in Image
99(1)
3.2 Phase Congruency and Edge Detection in an Image
100(6)
3.3 Fourier Transform for Continuous and Discrete Time Signals
106(4)
3.3.1 Discrete Time Fourier Transform
107(2)
3.3.2 DFT and FFT
109(1)
3.4 DFT of Digital Image
110(2)
3.5 Translation and Scaling Properties of 2D Fourier Transform
112(8)
3.5.1 Translation: Dragging the LF (DC) Component at the Center of the 2D Spectra
112(2)
3.5.2 Scaling: Space-Frequency Relationship in Image
114(6)
3.6 Concept of Image Filtering in Frequency Domain
120(4)
3.7 Smoothing Filter
124(6)
3.7.1 Ideal LPF
125(1)
3.7.2 Butterworth LPF
126(3)
3.7.3 Gaussian LPF
129(1)
3.8 Sharpening Filter
130(6)
3.8.1 Ideal HPF
132(1)
3.8.2 Butterworth HPF
133(2)
3.8.3 Gaussian HPF
135(1)
3.9 Case Studies
136(7)
3.9.1 Importance of Phase over Amplitude in DFT Spectrum
136(2)
3.9.2 DFT over DFT
138(5)
3.10 Matlab Codes
143(6)
3.10.1 Ideal 2D Filters in Frequency Domain
143(2)
3.10.2 Subroutine of 2D Butterworth Filter
145(1)
3.10.3 Subroutine of 2D Gaussian Filter
145(1)
3.10.4 Importance of Phase over Amplitude in Image Spectrum
146(1)
References
147(2)
4 Color Science and Color Technology
149(42)
4.1 Light and Primary Colors
149(9)
4.1.1 Device-Dependent Primary Colors: Additive Color Model
151(1)
4.1.2 Device-Dependent Primary Colors: Subtractive Color Model
152(2)
4.1.3 Reflectance and Its Spectra
154(4)
4.2 Psycho-Visual Color: Human Vision System
158(3)
4.2.1 Photoreceptors: Rods and Cones
158(3)
4.3 Color Description Systems
161(5)
4.3.1 Munsell System
162(1)
4.3.2 Pantone System
163(3)
4.4 Colorimetry: CIE Standards
166(4)
4.4.1 CIE Standard Illuminant
167(2)
4.4.2 CIE Standard Observer
169(1)
4.5 CIE Color Spaces
170(7)
4.5.1 Non-uniform Perceptual Color Spaces
171(3)
4.5.2 Uniform Perceptual Color Spaces
174(2)
4.5.3 Xerox/YES Color Space
176(1)
4.6 Halftone Screening
177(4)
4.6.1 Moire Pattern and Screen Angle
178(1)
4.6.2 Growth Sequence of Halftone Dot
179(2)
4.7 Color Management
181(8)
4.7.1 Profile Connection Space (PCS)
184(1)
4.7.2 Gamut Mapping
184(1)
4.7.3 Rendering Intents
185(4)
4.8 Matlab Codes
189(2)
4.8.1 Halftone Screening by Error Diffusion
189(1)
4.8.2 Error Diffusion Subroutine
190(1)
Reference
190(1)
5 Wavelets: Multiresolution Image Processing
191(32)
5.1 Introduction
191(1)
5.2 Short-Time Fourier Transform
191(5)
5.2.1 Continuous-time STFT
194(1)
5.2.2 Discrete-time STFT
194(1)
5.2.3 Spectrogram
194(1)
5.2.4 Limitation
195(1)
5.3 Wavelet Function and Scaling Function
196(6)
5.4 Wavelet Series
202(1)
5.5 Discrete Wavelet Transform and Multiresolution analysis
203(4)
5.5.1 Analysis Filter Bank
205(1)
5.5.2 Synthesis Filter Bank
206(1)
5.6 Image Decomposition Using DWT
207(3)
5.6.1 Concept of 2D Signal Decomposition Using Analysis Filter
207(1)
5.6.2 DWT on Images (Fig. 5.16)
208(2)
5.7 Image Compression Using DWT: EZW Encoding
210(8)
5.7.1 Relationship Between Decomposed Sub-bands
211(1)
5.7.2 Successive Approximation Quantization in EZW
212(1)
5.7.3 EZW Encoding Algorithm
213(1)
5.7.4 Image Compression using EZW: An Example
214(2)
5.7.5 Experimental Results of Image Compression Using EZW
216(2)
5.8 MATLAB Programs
218(5)
5.8.1 Haar Scaling and Wavelet Function
218(1)
5.8.2 Wavelet Series Expansion
219(1)
5.8.3 Wavelet Decomposition of Image (4 level)
220(1)
5.8.4 Image Compression by EZW Encoding
221(1)
References
221(2)
6 Compression and Encoding of Image: Image Formats
223(46)
6.1 Redundancy: Fundamentals of Compression
224(2)
6.2 Entropy: The Measure of Information
226(1)
6.3 Entropy Coding
227(3)
6.3.1 Shannon--Fano Coding
228(1)
6.3.2 Huffman Coding
229(1)
6.4 Lossy Compression
230(6)
6.4.1 Block Truncation Compression (BTC)
230(3)
6.4.2 Vector Quantization Compression (VQC)
233(3)
6.5 Lossless Compression
236(2)
6.5.1 Run Length Coding (RLC)
236(1)
6.5.2 Block Coding
237(1)
6.6 QPAC: Quality Preserving Adaptive Compression
238(1)
6.7 Some Common Image Formats
239(19)
6.7.1 C ++ Code for Reading BMP Image
240(5)
6.7.2 JPEG
245(9)
6.7.3 GIF
254(4)
6.8 Matlab Codes and Pseudocodes
258(11)
6.8.1 Block Truncation Compression (BTC)
258(3)
6.8.2 JPEG Compression
261(5)
6.8.3 GIF: LZW Compression
266(1)
6.8.4 GIF: LZW Decompression
267(1)
References
267(2)
7 Morphology-Based Image Processing
269(30)
7.1 Basics of Set Theory
269(2)
7.2 Logic Operations on Binary Images
271(2)
7.3 Dilation and Erosion
273(6)
7.3.1 Dilation
273(3)
7.3.2 Erosion
276(3)
7.4 Opening and Closing
279(1)
7.5 Hit-Miss Transform
280(1)
7.6 Morphological Algorithms for Feature Extraction
280(13)
7.6.1 Boundary Extraction
282(1)
7.6.2 Region Filling
283(1)
7.6.3 Pixel Connectivity
284(1)
7.6.4 Convex Hull
285(1)
7.6.5 Thinning
286(2)
7.6.6 Thickening
288(1)
7.6.7 Object Skeletons
289(1)
7.6.8 Pruning
290(3)
7.7 Case Studies
293(3)
7.7.1 Boundary Detection
293(2)
7.7.2 Region Filling
295(1)
7.7.3 Binary Skeleton
295(1)
7.8 MATLAB Codes
296(3)
7.8.1 Dilation
296(1)
7.8.2 Erosion
297(1)
7.8.3 Boundary Detection
297(1)
Reference
298(1)
8 Patterns in Images and Their Applications
299(42)
8.1 Introduction to Pattern
299(1)
8.2 Features
300(2)
8.2.1 Feature Selection and Extraction
301(1)
8.3 Principal Component Analysis
302(6)
8.3.1 Algorithm of PC A
303(2)
8.3.2 Application of PC A in Face Recognition
305(2)
8.3.3 Limitations of PCA-Based Face Recognition
307(1)
8.4 Face Detection Based on Haar-Like Features
308(3)
8.5 Elastic Branch Graph Matching and Face Manifold
311(3)
8.6 Decision Tree and Feature Hierarchy
314(5)
8.6.1 Information Gain
314(1)
8.6.2 Information Gain Ratio
315(1)
8.6.3 Selection of Optimized Set of Features
316(1)
8.6.4 Feature Hierarchy for Gabor Features in Face Recognition
317(2)
8.7 Scale Invariant Feature Transform
319(13)
8.7.1 Scale-Space Concept: Multiscale Singularity Tree
320(2)
8.7.2 SIFT: Representation of Image in Scale--Space
322(2)
8.7.3 SIFT: Detection of Local Scale--Space Extrema
324(1)
8.7.4 SIFT: Accurate Keypoint Localization
325(1)
8.7.5 SIFT: Orientation Assignment
326(1)
8.7.6 SIFT: Keypoint Descriptor
327(1)
8.7.7 SIFT: Results
328(4)
8.8 Histogram of Oriented Gradient
332(4)
8.8.1 HOG: Dividing Image into Blocks
333(1)
8.8.2 HOG: Quantization of Gradient Histogram
333(2)
8.8.3 HOG: Feature Vector Synthesis
335(1)
8.8.4 HOG: Design of Classifier by Training
335(1)
8.9 Matlab Codes
336(5)
8.9.1 PCA of a 2D data set
336(1)
8.9.2 Scale--Space: Multiscale Singularity Tree
337(1)
Reference
338(3)
9 Psycho-visual pattern recognition: Computer Vision
341(24)
9.1 Introduction
341(1)
9.2 Receptive Field
342(5)
9.2.1 On-Center Off-Surround
343(1)
9.2.2 Off-Center On-Surround
344(1)
9.2.3 Edge Detection in Retinal Receptive Field
345(2)
9.3 Modeling of Retinal Receptive Field from Optical Illusions
347(5)
9.3.1 Optical Illusions: A study
347(1)
9.3.2 Illustration of the Illusions in Terms of DoG Model of Retinal Receptive Field
348(4)
9.4 Three Levels of Psycho-Visual System for Pattern Recognition
352(1)
9.5 Neuro-Visually Inspired Figure-Ground Segregation
353(5)
9.5.1 The Detailed Algorithm for NFGS
355(3)
9.6 "Where" and "What" Visual Pathways: Modeling in Computer Vision
358(7)
References
362(3)
10 Appendix A: Digital Differentiation and Edge Detection
365(18)
10.1 Edge in an Image
365(1)
10.2 Digital Differentiation
366(3)
10.2.1 Digital Differentiation of One-Dimensional (1D) Signal
367(2)
10.3 Digital Differentiation for Edge Detection
369(2)
10.4 Convolution and Correlation for Edge Detection
371(3)
10.5 Prewitt and Sobel Mask for Edge Detection of Digital Image
374(1)
10.6 Canny Edge Detector
375(3)
10.6.1 Noise Reduction
375(1)
10.6.2 Non-Maxima Suppression
376(1)
10.6.3 Hysteresis Thresholding
376(2)
10.7 MATLAB Codes
378(5)
10.7.1 Digital Differentiation of 1D Signal
378(1)
10.7.2 Detection of Edges in Orthogonal Directions by Convolution Interpretation of Digital Differentiation
379(2)
References
381(2)
11 Appendix B: Elementary Probability Theory
383(16)
11.1 Concept of Probability
385(1)
11.1.1 Random Experiments and Sample Space
385(1)
11.1.2 Events
385(1)
11.1.3 Probability: Understanding Approaches
386(1)
11.2 Random Variable
386(1)
11.3 Mean, Variance, Skewness, and Kurtosis
387(2)
11.4 Cumulative Distribution Function
389(3)
11.5 Probability Density Function
392(1)
11.5.1 Uniform PDF
393(1)
11.6 Frequently Used Probability Distribution
393(6)
References
397(2)
12 Appendix C: Frequently Used MATLAB Functions
399(14)
12.1 plot()
399(1)
12.1.1 Syntax
399(1)
12.1.2 Description
399(1)
12.2 imshow()
400(1)
12.2.1 Syntax
400(1)
12.2.2 Description
400(1)
12.3 drawnow()
401(1)
12.3.1 Syntax
401(1)
12.3.2 Description
401(1)
12.4 stairs()
401(1)
12.5 int2str()
402(1)
12.5.1 Syntax
402(1)
12.5.2 Description
402(1)
12.6 conv()
402(1)
12.7 conv2()
403(1)
12.8 Two-Dimensional Convolution
403(1)
12.9 ginput()
404(1)
12.10 bitget()
405(1)
12.11 bitset()
405(1)
12.12 dec2bin()
406(1)
12.12.1 Syntax
406(1)
12.12.2 Description
406(1)
12.13 fft2()
407(1)
12.13.1 Syntax
407(1)
12.13.2 Description
407(1)
12.14 fftshift()
407(2)
12.14.1 Syntax
407(1)
12.14.2 Description
408(1)
12.15 wavefun()
409(3)
12.15.1 Syntax
409(1)
12.15.2 Description
410(2)
12.16 Fourier Synthesizer GUI
412(1)
Reference
412(1)
Index 413
Apurba Das is a Technical Specialist in the Image Processing Lab at HCL Technologies, Chennai, India. He has previously served as a Scientist in the Advanced Image Processing Lab at the Centre for Development of Advanced Computing, a R&D organization of the Indian Government Ministry of Communications and Information Technology. His other Springer publications include the books Signal Conditioning: An Introduction to Continuous Wave Communication and Signal Processing and Digital Communication: Principles and System Modelling.