Atjaunināt sīkdatņu piekrišanu

E-grāmata: Handbook of AI-based Metaheuristics

Edited by (MIT World Peace University, Pune, India), Edited by (Universite Paris-Est Creteil, France)
  • Formāts: 418 pages
  • Sērija : Advances in Metaheuristics
  • Izdošanas datums: 01-Sep-2021
  • Izdevniecība: CRC Press
  • Valoda: eng
  • ISBN-13: 9781000434255
Citas grāmatas par šo tēmu:
  • Formāts - EPUB+DRM
  • Cena: 93,91 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 418 pages
  • Sērija : Advances in Metaheuristics
  • Izdošanas datums: 01-Sep-2021
  • Izdevniecība: CRC Press
  • Valoda: eng
  • ISBN-13: 9781000434255
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book provides a wide-ranging reference to the theoretical and mathematical formulations of metaheuristics, including bio-inspired, swarm-based, socio-cultural and physics-based methods or algorithms; their testing and validation, along with detailed illustrative solutions and applications, as well as newly devised metaheuristic algorithms.



At the heart of the optimization domain are mathematical modeling of the problem and the solution methodologies. The problems are becoming larger and with growing complexity. Such problems are becoming cumbersome when handled by traditional optimization methods. This has motivated researchers to resort to artificial intelligence (AI)-based, nature-inspired solution methodologies or algorithms.

The Handbook of AI-based Metaheuristics provides a wide-ranging reference to the theoretical and mathematical formulations of metaheuristics, including bio-inspired, swarm-based, socio-cultural, and physics-based methods or algorithms; their testing and validation, along with detailed illustrative solutions and applications; and newly devised metaheuristic algorithms.

This will be a valuable reference for researchers in industry and academia, as well as for all Master’s and PhD students working in the metaheuristics and applications domains.

Section I Bio-Inspired Methods

Chapter 1 Brain Storm Optimization Algorithm

Marwa Sharawi, Mohammadreza Gholami,

and Mohammed El-Abd

Chapter 2 Fish School Search: Account for the First Decade

Carmelo José Abanez Bastos-Filho, Fernando Buarque de Lima-Neto,

Anthony José da Cunha Carneiro Lins, Marcelo Gomes Pereira de

Lacerda, Mariana Gomes da Motta Macedo, Clodomir Joaquim de

Santana Junior, Hugo Valadares Siqueira, Rodrigo Cesar Lira da Silva,

Hugo Amorim Neto, Breno Augusto de Melo Menezes, Isabela Maria

Carneiro Albuquerque, Joćo Batista Monteiro Filho, Murilo Rebelo Pontes,

and Joćo Luiz Vilar Dias

Chapter 3 Marriage in Honey Bees Optimization in Continuous Domains

Jing Liu, Sreenatha Anavatti, Matthew Garratt,

and Hussein A. Abbass

Chapter 4 Structural Optimization Using Genetic Algorithm...

Ravindra Desai

Section II Physics and Chemistry-Based Methods

Chapter 5 Gravitational Search Algorithm: Theory, Literature Review,

and Applications

Amin Hashemi, Mohammad Bagher Dowlatshahi,

and Hossein Nezamabadi-pour

Chapter 6 Stochastic Diffusion Search

Andrew Owen Martin

BK-TandF-KULKARNI_9780367753030-210197-FM.indd 7 22/06/21 2:03 PM

viii Contents

Section III Socio-inspired Methods

Chapter 7 The League Championship Algorithm: Applications and Extensions

Ali Husseinzadeh Kashan, Alireza Balavand, Somayyeh Karimiyan,

and Fariba Soleimani

Chapter 8 Cultural Algorithms for Optimization

Carlos Artemio Coello Coello and Ma Guadalupe Castillo Tapia

Chapter 9 Application of Teaching-Learning-Based Optimization

on Solving of Time Cost Optimization Problems

Vedat Toan, Tayfun Dede, and Hasan Basri Baaa

Chapter 10 Social Learning Optimization

Yue-Jiao Gong

Chapter 11 Constraint Handling in Multi-Cohort Intelligence Algorithm

Apoorva S. Shastri and Anand J. Kulkarni

Section IV Swarm-Based Methods

Chapter 12 Bee Colony Optimization and Its Applications

Duan Teodorovi, Tatjana Davidovi, Milica elmi,

and Milo Nikoli

Chapter 13 A Bumble Bees Mating Optimization Algorithm for the Location

Routing Problem with Stochastic Demands

Magdalene Marinaki and Yannis Marinakis

Chapter 14 A Glowworm Swarm Optimization Algorithm for the Multi-Objective

Energy Reduction Multi-Depot Vehicle Routing Problem

Emmanouela Rapanaki, Iraklis-Dimitrios Psychas,

Magdalene Marinaki, and Yannis Marinakis

Chapter 15 Monarch Butterfly Optimization

Liwen Xie and Gai-Ge Wang
Patrick Siarry is a Professor of Automatics and Informatics at the University of Paris-Est Créteil, where he leads the Image and Signal Processing team in the Laboratoire Images, Signaux et Systčmes Intelligents (LiSSi).

Anand J Kulkarni is Associate Professor at the Symbiosis Center for Research and Innovation, Symbiosis International (Deemed University).