Atjaunināt sīkdatņu piekrišanu

E-grāmata: Handbook Of Carbon Nano Materials (Volumes 5-6)

Edited by (Univ Of North Texas, Usa), Edited by (University Of Houston, Usa)
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 246,83 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

The fifth and sixth volumes of the Handbook of Carbon Nano Materials focus on fundamental properties and key applications of graphene. Graphene, the thinnest known material made of a single atom thick sheet of carbon atoms arranged hexagonally, offers great opportunities for application development in nanotechnology. This handbook covers fundamental properties, characterization, chemical manipulation, and applications of graphene. Specific applications cover latest developments in chemical manipulation, thermodynamic characterization, energy conversion and storage, and biosensor development.
Preface xi
List of Contributors
xiii
Chapter 1 Fundamental Properties of Graphene
1(38)
Henry P. Pinto and Jerzy Leszczynski
1(1)
1 Introduction
1(4)
2 Electronic Properties of Pristine Graphene
5(11)
2.1 Band structure
5(3)
2.1.1 Few-layered graphene
8(2)
2.2 Chirality and quantum hall effect
10(1)
2.3 The Klein tunneling in graphene
11(3)
2.4 Atomic collapse on graphene
14(2)
3 Elastic Properties of Graphene
16(3)
4 Structural Defects in Graphene
19(11)
4.1 Stone--Wales defects
21(1)
4.2 Carbon vacancies
21(2)
4.3 Carbon adatoms
23(1)
4.4 Grain boundary loops
24(1)
4.5 Noncarbon adatoms and substitutional impurities
25(1)
4.6 Grain boundaries
26(1)
4.7 Effect of defects on the properties of graphene
27(3)
5 Summary
30(9)
Acknowledgments
31(1)
References
32(7)
Chapter 2 Adsorption on and Reactivity of Carbon Nanotubes and Graphene
39(146)
M. Rosa Axet
Revathi R. Bacsa
Bruno F. Machado
Philippe Serp
1 Introduction
40(2)
2 Structure and Adsorption Sites
42(12)
2.1 Structure and adsorption sites of graphene and FLG
42(3)
2.1.1 Presence of defects
45(4)
2.2 Structure and adsorption sites of carbon nanotubes
49(2)
2.2.1 Presence of defects
51(3)
3 Physisorption on CNTs and Graphene
54(29)
3.1 Physisorption of gases on CNTs and graphene
55(1)
3.1.1 Physisorption on individual CNTs
55(4)
3.1.2 Physisorption on CNT bundles
59(3)
3.1.3 Physisorption on graphene
62(4)
3.2 Physisorption of liquids on CNTs and graphene
66(2)
3.2.1 Adsorption of water on CNTs and graphene
68(3)
3.2.2 Physisorption of ionic liquids on graphene and CNTs
71(2)
3.2.3 Physisorption on CNTs and graphene of ions and molecules from solution
73(4)
3.2.4 Physisorption of liquids on doped CNTs and graphene
77(1)
3.3 Physisorption of solids on CNTs and graphene
77(1)
3.3.1 Metals and semiconductors
77(3)
3.3.2 Physisorption of metals and semiconductors on doped CNTs or graphene
80(1)
3.3.3 Physisorption of polymers
81(1)
3.3.4 Polymer adsorption on doped graphene or CNTs
82(1)
4 Chemisorption on CNTs and Graphene
83(39)
4.1 Chemisorption of gases on CNTs and graphene
83(1)
4.1.1 Gas chemisorption on CNTs
83(1)
4.1.2 Effect of dopants on gas chemisorption with CNTs
84(3)
4.1.3 Gas chemisorption on graphene
87(6)
4.1.4 Effect of dopants on gas chemisorption with graphene
93(4)
4.2 Chemisorption of liquids on CNTs and graphene
97(2)
4.3 Chemisorption of solids on CNTs and graphene
99(1)
4.3.1 Alkali metals
99(3)
4.3.2 Alkaline-earth metals
102(1)
4.3.3 d-metals
102(13)
4.3.4 Adsorption of other metals, metalloids, and non-metals
115(1)
4.3.5 Polymers
116(6)
5 Reactivity on CNTs and Graphene
122(63)
5.1 Surface chemistry of nanostructured carbon materials
124(4)
5.2 Catalysis
128(1)
5.2.1 CNTs, CNFs, and FLG as metal-free catalyst
129(7)
5.2.2 Hydrogenation
136(4)
5.2.3 Oxidation and environmental catalysis
140(4)
5.2.4 Fuel cell catalysis
144(6)
5.3 Gas sensors
150(3)
5.4 Bioreactivity and degradability of CNTs and graphene
153(2)
5.4.1 Biosensors
155(1)
5.4.2 Drug delivery
156(2)
5.4.3 Biodegradability and toxicity
158(2)
References
160(25)
Chapter 3 Chemical Manipulation of Graphene in Dispersions
185(34)
Jesus Ivan Tapia
Mildred Quintana
1 Introduction
186(1)
2 Liquid-Phase Exfoliated Graphene
187(8)
2.1 Ultrasonication of graphite
187(1)
2.1.1 Graphene dispersions in organic solvents
188(2)
2.1.2 Graphene dispersions in surfactant solutions
190(1)
2.2 Non-ultrasonication techniques
190(1)
2.2.1 Intercalation compounds
190(1)
2.2.2 Ionics compounds
191(2)
2.2.3 Ball-milling production
193(1)
2.2.4 Supercritical fluids
194(1)
2.2.5 Unzipping of carbon nanotubes
194(1)
3 Other Nanostructures from Liquid-Phase Exfoliated Graphene
195(4)
3.1 Deformation, folding, and stabilization
196(1)
3.2 Ultrasonication of graphite
196(1)
3.2.1 Tiopronin as antioxidant molecule
196(1)
3.2.2 Transformation of few-layer graphene into MWNTs
197(2)
4 Covalent Functionalization of Graphene in Dispersions
199(5)
4.1 Free radical addition
201(1)
4.2 Dienophiles addition
201(3)
5 Graphene Composites
204(8)
5.1 Graphene/polymer composites
206(1)
5.2 Synthesis of graphene/polymer composites
207(1)
5.3 Graphene/inorganic material composites
208(1)
5.4 Synthesis of graphene-inorganic nanocomposites
209(1)
5.5 Miscellaneous applications of graphene
210(2)
6 Conclusions
212(7)
Acknowledgments
212(1)
References
212(7)
Chapter 4 On Thermodynamic Characteristics of the Thermal Desorption of Hydrogen from Hydrogenated Graphene Layers
219
Yury S. Nechaev
T. Nejat Veziroglu
1 Introduction
220(3)
2 Analysis and Comparison of Data
223(12)
2.1 Consideration of data on theoretical graphanes (CH)
223(3)
2.2 Consideration of data on hydrogen thermal desorption from theoretical and experimental graphanes
226(2)
2.3 Consideration of a thermodynamic probability of existence of hydrogenated graphenes--graphanes possessing of a very high binding energy
228(2)
2.4 Consideration of data on hydrogen desorption in the hydrogenated mono- and bilayer epitaxial graphene samples
230(5)
3 Analysis and Comparison of Data
235(15)
3.1 Analysis of the Raman spectroscopy data on thermal desorption of hydrogen from hydrogenated graphene flakes
235(2)
3.2 Analysis of the STM and STS data on reversible hydrogenation of epitaxial graphene and graphite surfaces
237(2)
3.3 Analysis of the HREELS/LEED data on thermal desorption of hydrogen from hydrogenated graphene on SiC substrate
239(3)
3.4 Analysis of the Raman spectroscopy data on thermal desorption of hydrogen from hydrogenated graphene layers on SiO2 substrate
242(2)
3.5 Analysis of TDS and STM data on HOPG treated by deuterium
244(1)
3.6 Analysis of PES and ARPES data on dehydrogenation of graphene/SiC samples
245(1)
3.7 Analysis of TDS and STM data on HOPG treated by hydrogen
246(4)
4 A Possibility of Intercalation of Solid H2 into Hydrogenated Graphite Nanofibers, Relevance to the Hydrogen On-Board Storage Problem
250(3)
5 Conclusions
253
Acknowledgments 254(1)
References 255(4)
Cumulative Index of Volumes 5 and 6 259
Preface ix
List of Contributors
xi
Chapter 1 Graphene-Based Materials for Energy Storage Applications
1(50)
Tapas Kuila
Partha Khanra
Nam Hoon Kim
Joong Hee Lee
1 Introduction
2(2)
2 Synthesis of Graphene
4(2)
3 Characterization of Graphene
6(5)
3.1 Morphological characterization
6(3)
3.2 Structural characterization
9(2)
4 Application of Graphene
11(4)
5 Graphene-Based Supercapacitor
15(27)
5.1 rGO supercapacitor
16(5)
5.2 Surface-modified graphene supercapacitor
21(4)
5.3 Metal nanoparticle/oxide-decorated graphene supercapacitor
25(7)
5.4 Graphene/conducting polymer composite supercapacitor
32(8)
5.5 Applications of graphene-based supercapacitor
40(1)
5.5.1 Starter for fuel-efficient stop--start systems
40(1)
5.5.2 Public transport
41(1)
5.5.3 Emergency management
41(1)
5.5.4 Other applications
42(1)
6 Conclusions
42(9)
Acknowledgments
43(1)
References
43(8)
Chapter 2 Graphene-Based Nanomaterials for Energy Conversion and Storage
51(32)
Chenzhen Zhang
Nasir Mahmood
Han Yin
Yanglong Hou
1 Introduction
51(1)
2 Liquid-Phase Synthesis of Graphene
52(5)
2.1 Liquid-phase synthesis from expanded graphite
53(3)
2.2 Liquid-phase synthesis from graphite oxide
56(1)
3 Nitrogen-Doped Graphene: Synthesis and Applications
57(9)
3.1 Synthesis of nitrogen-doped graphene
59(2)
3.2 Applications of nitrogen-doped graphene
61(1)
3.2.1 Oxygen reduction reaction of fuel cells
61(3)
3.2.2 Lithium ion batteries
64(2)
4 Graphene-Based Composites: Synthesis and Applications
66(9)
4.1 Graphene-based composites for oxygen reduction reaction
66(2)
4.2 Graphene-based composites for lithium ion batteries
68(6)
4.3 Graphene-based composites for supercapacitors
74(1)
5 Conclusions
75(8)
References
75(8)
Chapter 3 Graphene for Biosensor Applications
83(64)
Alexander Zopfl
Wendy Patterson
Thomas Hirsch
1 Introduction
83(4)
2 Biosensors for Glucose
87(16)
2.1 Amperometric glucose biosensors with direct electron transfer
88(5)
2.2 Amperometric glucose biosensors with detection of H2O2
93(8)
2.3 Mass-sensitive glucose biosensors
101(2)
3 Nucleic Acids
103(9)
4 Proteins
112(12)
4.1 Cancer biomarkers
113(4)
4.2 Thrombin
117(2)
4.3 Amino acids
119(3)
4.4 Immunoglobulins
122(2)
5 Other Biologically Relevant Analytes
124(7)
6 Conclusions
131(16)
References
133(14)
Chapter 4 Graphene-Based Electrochemical Biosensor
147(42)
Qian Zhang
Ling Zhang
Yang Liu
Jinghong Li
1 Introduction
148(2)
2 Synthesis and Functionalization of Graphene
150(8)
2.1 Synthesis and characterization of graphene
150(5)
2.2 Functionalization of graphene
155(3)
3 Electrochemical Properties of Graphene
158(2)
4 Graphene-Based Electrochemical Enzymatic Biosensor
160(19)
4.1 The introduction of electrochemical enzymatic biosensor
160(3)
4.2 Organic molecular-modified graphene-based enzymatic biosensor
163(3)
4.3 Polymer-modified graphene-based enzymatic biosensor
166(5)
4.4 Inorganic nanoparticles-modified graphene-based enzymatic biosensor
171(3)
4.5 Biomolecular-modified graphene-based enzymatic biosensor
174(2)
4.6 Graphene--carbon nanotube-based enzymatic biosensor
176(2)
4.7 N-doped graphene-based enzymatic biosensor
178(1)
5 Graphene-Based DNA Biosensor
179(2)
6 Conclusions and Perspectives
181(8)
Acknowledgments
182(1)
References
182(7)
Chapter 5 Graphene and Carbon Nanotube-Based Nanomaterial: Application in Biomedical and Energy Research
189(40)
Hemant Kumar
Debabrata Pramanik
Santosh Mogurampelly
V. Vasumathi
Bidisha Nandy
Prabal K. Maiti
1 Introduction
190(2)
2 Graphene-Nucleic Acid Composites
192(5)
2.1 Functionalization of graphene
192(1)
2.2 Adsorption of nucleic acids on graphene
193(4)
2.3 Biocompatibility of graphene
197(1)
3 DNA--Carbon Nanotube Composite
197(9)
3.1 Structure and properties
198(2)
3.2 Influence of temperature on oligonucleotide adsorption
200(2)
3.3 Applications
202(1)
3.3.1 Solubilization and sorting of carbon nanotube
202(1)
3.3.2 DNA--CNT hybrid in sensing mechanism
202(2)
3.3.3 Supercapacitors
204(1)
3.3.4 Cellular delivery of DNA strands
204(2)
4 Carbon Nanotube and Dendrimer Composite
206(7)
4.1 Covalent functionalization
207(1)
4.1.1 "Grafting to" approach
207(2)
4.1.2 "Grafting from" approach
209(2)
4.2 Non-covalent functionalization
211(2)
5 Carbon Nanomaterials for Energy Conversion
213(14)
5.1 Hydrogen storage
213(3)
5.1.1 Historical development
216(1)
5.1.2 Improving hydrogen storage by chemical functionalization
217(1)
5.2 Blue energy
218(2)
5.3 Voltage generation through flow
220(2)
5.4 Energy-efficient nanoelectrical devices
222(1)
5.4.1 Carbon nanotube-based FETs
223(2)
5.4.2 Nanotubes and graphene as interconnectors
225(1)
5.4.3 Flexible electronics: Thin film transistor
226(1)
5.4.4 Photovoltaic devices
226(1)
6 Conclusions and Outlook
227(2)
Acknowledgments 229(1)
References 229(8)
Cumulative Index of Volumes 5 and 6 237