|
|
|
|
|
|
|
|
Computational Statistics and Data Visualization |
|
|
4 | (2) |
|
Data Visualization and Theory |
|
|
4 | (1) |
|
Presentation and Exploratory Graphics |
|
|
4 | (1) |
|
|
5 | (1) |
|
|
6 | (6) |
|
Summary and Overview; Part II |
|
|
7 | (2) |
|
Summary and Overview; Part III |
|
|
9 | (1) |
|
Summary and Overview; Part IV |
|
|
10 | (1) |
|
|
11 | (1) |
|
|
12 | (4) |
|
|
|
A Brief History of Data Visualization |
|
|
|
|
|
16 | (1) |
|
|
17 | (25) |
|
Pre-17th Century: Early Maps and Diagrams |
|
|
17 | (2) |
|
1600--1699: Measurement and Theory |
|
|
19 | (3) |
|
1700--1799: New Graphic Forms |
|
|
22 | (3) |
|
1800--1850: Beginnings of Modern Graphics |
|
|
25 | (3) |
|
1850--1900: The Golden Age of Statistical Graphics |
|
|
28 | (9) |
|
1900--1950: The Modern Dark Ages |
|
|
37 | (2) |
|
1950--1975: Rebirth of Data Visualization |
|
|
39 | (1) |
|
1975--present: High-D, Interactive and Dynamic Data Visualization |
|
|
40 | (2) |
|
Statistical Historiography |
|
|
42 | (6) |
|
|
42 | (1) |
|
Analysing Milestones Data |
|
|
43 | (2) |
|
What Was He Thinking? -- Understanding Through Reproduction |
|
|
45 | (3) |
|
|
48 | (10) |
|
|
|
|
|
58 | (2) |
|
Content, Context and Construction |
|
|
58 | (1) |
|
Presentation Graphics and Exploratory Graphics |
|
|
59 | (1) |
|
|
60 | (2) |
|
|
60 | (1) |
|
|
61 | (1) |
|
|
62 | (1) |
|
Presentation (What to Whom, How and Why) |
|
|
62 | (1) |
|
Scientific Design Choices in Data Visualization |
|
|
63 | (7) |
|
|
64 | (1) |
|
Graphical Display Options |
|
|
64 | (6) |
|
Higher-dimensional Displays and Special Structures |
|
|
70 | (6) |
|
Scatterplot Matrices (Sploms) |
|
|
70 | (1) |
|
|
70 | (1) |
|
|
71 | (1) |
|
Small Multiples and Trellis Displays |
|
|
72 | (2) |
|
|
74 | (2) |
|
|
76 | (1) |
|
|
76 | (1) |
|
Bad Practice and Good Practice (Principles) |
|
|
77 | (1) |
|
|
77 | (4) |
|
|
|
|
|
81 | (3) |
|
|
82 | (2) |
|
|
84 | (1) |
|
|
84 | (8) |
|
|
84 | (3) |
|
|
87 | (1) |
|
|
88 | (4) |
|
|
92 | (1) |
|
|
92 | (6) |
|
|
93 | (4) |
|
Combining Graphical Elements |
|
|
97 | (1) |
|
|
98 | (1) |
|
|
98 | (2) |
|
|
98 | (1) |
|
|
98 | (1) |
|
|
99 | (1) |
|
|
99 | (1) |
|
|
100 | (4) |
|
Data Visualization Through Their Graph Representations |
|
|
|
|
|
104 | (1) |
|
|
104 | (2) |
|
|
106 | (12) |
|
Force-directed Techniques |
|
|
109 | (1) |
|
|
110 | (3) |
|
The Pulling Under Constraints Model |
|
|
113 | (1) |
|
|
114 | (4) |
|
Discussion and Concluding Remarks |
|
|
118 | (4) |
|
|
|
|
|
122 | (1) |
|
|
122 | (2) |
|
|
123 | (1) |
|
|
124 | (12) |
|
|
125 | (6) |
|
|
131 | (3) |
|
|
134 | (1) |
|
|
134 | (1) |
|
|
135 | (1) |
|
|
136 | (7) |
|
|
137 | (4) |
|
|
141 | (2) |
|
Graph-theoretic Analytics |
|
|
143 | (9) |
|
|
143 | (1) |
|
|
144 | (3) |
|
|
147 | (1) |
|
|
148 | (4) |
|
High-dimensional Data Visualization |
|
|
|
|
|
152 | (1) |
|
|
153 | (3) |
|
Associations in High-dimensional Data |
|
|
153 | (2) |
|
|
155 | (1) |
|
|
156 | (1) |
|
|
156 | (8) |
|
|
157 | (1) |
|
Trellis Display vs. Mosaic Plots |
|
|
158 | (3) |
|
Trellis Displays and Interactivity |
|
|
161 | (1) |
|
|
162 | (2) |
|
Parallel Coordinate Plots |
|
|
164 | (8) |
|
Geometrical Aspects vs. Data Analysis Aspects |
|
|
164 | (2) |
|
|
166 | (3) |
|
Sorting and Scaling Issues |
|
|
169 | (2) |
|
|
171 | (1) |
|
Projection Pursuit and the Grand Tour |
|
|
172 | (3) |
|
Grand Tour vs. Parallel Coordinate Plots |
|
|
174 | (1) |
|
|
175 | (5) |
|
Multivariate Data Glyphs: Principles and Practice |
|
|
|
|
|
180 | (1) |
|
|
180 | (1) |
|
|
181 | (1) |
|
Examples of Existing Glyphs |
|
|
182 | (1) |
|
|
183 | (1) |
|
Ordering of Data Dimensions/Variables |
|
|
184 | (4) |
|
|
185 | (1) |
|
|
185 | (1) |
|
|
185 | (1) |
|
|
186 | (2) |
|
|
188 | (3) |
|
|
188 | (1) |
|
Structure-driven Placement |
|
|
189 | (2) |
|
|
191 | (4) |
|
|
195 | (5) |
|
Linked Views for Visual Exploration |
|
|
|
|
Visual Exploration by Linked Views |
|
|
200 | (2) |
|
Theoretical Structures for Linked Views |
|
|
202 | (7) |
|
Linking Sample Populations |
|
|
204 | (1) |
|
|
205 | (3) |
|
|
208 | (1) |
|
|
209 | (1) |
|
Visualization Techniques for Linked Views |
|
|
209 | (4) |
|
|
209 | (1) |
|
|
210 | (1) |
|
|
211 | (1) |
|
Special Forms of Linked Highlighting |
|
|
212 | (1) |
|
|
213 | (1) |
|
|
214 | (4) |
|
|
|
|
Motivation: Why Use Linked Views? |
|
|
218 | (3) |
|
The Linked Views Paradigm |
|
|
221 | (3) |
|
Brushing Scatterplot Matrices and Other Nonaggregated Views |
|
|
224 | (3) |
|
Generalizing to Aggregated Views |
|
|
227 | (4) |
|
|
231 | (1) |
|
Linking from Multiple Views |
|
|
232 | (3) |
|
Linking to Domain-specific Views |
|
|
235 | (3) |
|
|
238 | (1) |
|
|
239 | (5) |
|
Visualizing Trees and Forests |
|
|
|
|
|
244 | (1) |
|
|
244 | (12) |
|
|
245 | (4) |
|
|
249 | (5) |
|
|
254 | (2) |
|
|
256 | (6) |
|
|
257 | (2) |
|
|
259 | (1) |
|
|
260 | (2) |
|
|
262 | (6) |
|
|
|
Interactive Linked Micromap Plots for the Display of Geographically Referenced Statistical Data |
|
|
|
|
|
|
268 | (4) |
|
|
272 | (2) |
|
Design Issues and Variations on Static Micromaps |
|
|
274 | (2) |
|
Web-based Applications of LM Plots |
|
|
276 | (7) |
|
Micromaps on the EPA CEP Web Site |
|
|
278 | (1) |
|
Micromaps on the USDA--NASS Web Site |
|
|
278 | (1) |
|
Micromaps on the NCI Web Site |
|
|
279 | (2) |
|
Micromaps at Utah State University |
|
|
281 | (2) |
|
|
283 | (5) |
|
|
283 | (3) |
|
|
286 | (1) |
|
Micromaps via Java and Other Statistical Packages |
|
|
287 | (1) |
|
|
288 | (8) |
|
Grand Tours, Projection Pursuit Guided Tours, and Manual Controls |
|
|
|
|
|
|
|
|
296 | (5) |
|
Some Basics on Projections |
|
|
297 | (2) |
|
What Structure Is Interesting? |
|
|
299 | (2) |
|
|
301 | (9) |
|
Terminology: Plane, Basis, Frame, Projection |
|
|
302 | (1) |
|
Interpolating Between Projections: Making a Movie |
|
|
302 | (1) |
|
Choosing the Target Plane |
|
|
303 | (7) |
|
A Note on Transformations |
|
|
310 | (1) |
|
|
310 | (1) |
|
Using Tours with Numerical Methods |
|
|
310 | (2) |
|
|
312 | (4) |
|
|
|
|
|
|
316 | (3) |
|
|
319 | (3) |
|
|
322 | (3) |
|
Example: Shakespeare Keywords |
|
|
325 | (5) |
|
|
330 | (1) |
|
|
331 | (2) |
|
|
333 | (5) |
|
Correspondence Analysis and Reciprocal Averaging |
|
|
338 | (3) |
|
Large Data Sets and Other Numerical Approaches |
|
|
341 | (10) |
|
Huge Multidimensional Data Visualization: Back to the Virtue of Principal Coordinates and Dendrograms in the New Computer Age |
|
|
|
|
|
|
|
351 | (1) |
|
The Geometric Approach to the Statistical Analysis |
|
|
352 | (3) |
|
Distance and Metric Space |
|
|
353 | (1) |
|
|
354 | (1) |
|
|
355 | (5) |
|
Principal Component Analysis |
|
|
356 | (4) |
|
Distance Visualization in Rp |
|
|
360 | (5) |
|
|
362 | (3) |
|
Principal Axis Methods and Classification: a Unified View |
|
|
365 | (1) |
|
|
365 | (25) |
|
|
366 | (2) |
|
Mixed Strategy for Very Large Datasets |
|
|
368 | (22) |
|
Multivariate Visualization by Density Estimation |
|
|
|
|
|
|
Univariate Density Estimates |
|
|
390 | (11) |
|
|
390 | (3) |
|
Improved Binned Density Estimates |
|
|
393 | (1) |
|
|
394 | (3) |
|
|
397 | (3) |
|
Multiscale Visualization of Density Estimates |
|
|
400 | (1) |
|
Bivariate Density Estimates |
|
|
401 | (5) |
|
|
402 | (2) |
|
Bivariate Kernel Density Estimators |
|
|
404 | (2) |
|
Higher-dimensional Density Estimates |
|
|
406 | (11) |
|
Structured Sets of Graphs |
|
|
|
|
|
|
417 | (1) |
|
Cartesian Products and the Trellis Paradigm |
|
|
417 | (2) |
|
|
418 | (1) |
|
Implementation of Trellis Graphics |
|
|
418 | (1) |
|
Scatterplot Matrices: splom and xysplom |
|
|
419 | (10) |
|
Example -- Life Expectancy |
|
|
419 | (1) |
|
Display of Scatterplot Matrix |
|
|
420 | (2) |
|
Example -- A Scatterplot Matrix with Conditioning |
|
|
422 | (1) |
|
Coordinating Sets of Related Graphs |
|
|
422 | (3) |
|
|
425 | (1) |
|
Example -- an xysplom with Labeled Correlation Coefficients |
|
|
426 | (1) |
|
Ladder of Powers Plot -- Wool Data |
|
|
427 | (2) |
|
Regression Diagnostic Plots |
|
|
429 | (2) |
|
|
429 | (1) |
|
|
429 | (2) |
|
Analysis of Covariance Plots |
|
|
431 | (3) |
|
|
432 | (1) |
|
Cartesian Product of Model Parameters |
|
|
433 | (1) |
|
|
434 | (5) |
|
Two-factor Rhizobium Example |
|
|
434 | (1) |
|
Extended Two-way Interaction Plot |
|
|
434 | (1) |
|
Three-factor Vulcanized Rubber Example |
|
|
435 | (2) |
|
Design Issues for the Two-way Interaction Plot |
|
|
437 | (1) |
|
Two-way Interaction Plots with Simple Effects |
|
|
437 | (2) |
|
|
439 | (3) |
|
Assessing Three-way Interaction |
|
|
439 | (1) |
|
|
440 | (1) |
|
|
441 | (1) |
|
|
441 | (1) |
|
Example -- Muscle Data, continued |
|
|
442 | (1) |
|
Graphical Display of Incidence and Relative Risk |
|
|
442 | (2) |
|
|
444 | (1) |
|
|
444 | (4) |
|
Regression by Parts: Fitting Visually Interpretable Models with Guide |
|
|
|
|
|
448 | (1) |
|
Boston Housing Data -- Effects of Collinearity |
|
|
449 | (4) |
|
|
453 | (2) |
|
Mussels -- Categorical Predictors and SIR |
|
|
455 | (4) |
|
Crash Tests -- Outlier Detection Under Confounding |
|
|
459 | (6) |
|
Car Insurance Rates -- Poisson Regression |
|
|
465 | (3) |
|
|
468 | (4) |
|
Structural Adaptive Smoothing by Propagation--Separation Methods |
|
|
|
|
|
|
472 | (3) |
|
|
472 | (1) |
|
|
473 | (2) |
|
|
475 | (3) |
|
Adaptive Weights Smoothing |
|
|
476 | (1) |
|
Choice of Parameters: Propagation Condition |
|
|
477 | (1) |
|
An Illustrative Univariate Example |
|
|
478 | (2) |
|
Examples and Applications |
|
|
480 | (9) |
|
Application 1: Adaptive Edge-Preserving Smoothing in 3-D |
|
|
480 | (1) |
|
Examples: Binary and Poisson Data |
|
|
481 | (2) |
|
Example: Denoising of Digital Color Images |
|
|
483 | (2) |
|
Example: Local Polynomial Propagation--Separation (PS) Approach |
|
|
485 | (4) |
|
|
489 | (5) |
|
Smoothing Techniques for Visualisation |
|
|
|
|
|
494 | (2) |
|
Smoothing in One Dimension |
|
|
496 | (6) |
|
Smoothing in Two Dimensions |
|
|
502 | (5) |
|
|
507 | (4) |
|
|
511 | (29) |
|
Data Visualization via Kernel Machines |
|
|
|
|
|
|
|
|
|
540 | (1) |
|
Kernel Machines in the Framework of an RKHS |
|
|
541 | (2) |
|
Kernel Principal Component Analysis |
|
|
543 | (8) |
|
|
544 | (7) |
|
Kernel Canonical Correlation Analysis |
|
|
551 | (3) |
|
|
554 | (8) |
|
Visualizing Cluster Analysis and Finite Mixture Models |
|
|
|
|
|
562 | (2) |
|
|
562 | (2) |
|
|
564 | (1) |
|
Hierarchical Cluster Analysis |
|
|
564 | (3) |
|
|
565 | (2) |
|
|
567 | (1) |
|
Partitioning Cluster Analysis |
|
|
567 | (13) |
|
|
569 | (1) |
|
|
570 | (1) |
|
|
571 | (1) |
|
|
572 | (2) |
|
Cluster Location and Dispersion |
|
|
574 | (2) |
|
Using Background Variables |
|
|
576 | (1) |
|
|
577 | (3) |
|
|
580 | (6) |
|
|
586 | (4) |
|
Visualizing Contingency Tables |
|
|
|
|
|
|
|
590 | (1) |
|
|
591 | (7) |
|
|
592 | (3) |
|
|
595 | (1) |
|
|
596 | (2) |
|
|
598 | (1) |
|
Using Colors for Residual-Based Shadings |
|
|
598 | (8) |
|
A Note on Colors and Color Palettes |
|
|
598 | (3) |
|
Highlighting and Color-Based Shadings |
|
|
601 | (2) |
|
Visualizing Test Statistics |
|
|
603 | (2) |
|
|
605 | (1) |
|
Selected Methods for Multiway Tables |
|
|
606 | (8) |
|
Exploratory Visualization Techniques |
|
|
607 | (1) |
|
Model-Based Displays for Conditional Independence Models |
|
|
608 | (3) |
|
|
611 | (3) |
|
|
614 | (1) |
|
|
614 | (5) |
|
Mosaic Plots and Their Variants |
|
|
|
|
Definition and Construction |
|
|
619 | (3) |
|
Interpreting Mosaic Plots |
|
|
622 | (5) |
|
Probabilities in Mosaic Plots |
|
|
622 | (2) |
|
Visualizing Interaction Effects |
|
|
624 | (3) |
|
|
627 | (8) |
|
|
627 | (1) |
|
|
628 | (4) |
|
|
632 | (3) |
|
Related Work and Generalization |
|
|
635 | (5) |
|
|
635 | (1) |
|
|
636 | (2) |
|
|
638 | (2) |
|
|
640 | (4) |
|
Parallel Coordinates: Visualization, Exploration and Classification of High-Dimensional Data |
|
|
|
|
|
644 | (4) |
|
|
644 | (2) |
|
The Case for Visualization |
|
|
646 | (2) |
|
Exploratory Data Analysis with || -coords |
|
|
648 | (16) |
|
Multidimensional Detective |
|
|
648 | (1) |
|
An Easy Case Study: GIS Data |
|
|
649 | (6) |
|
Compound Queries: Financial Data |
|
|
655 | (8) |
|
|
663 | (1) |
|
|
664 | (4) |
|
Visual and Computational Models |
|
|
668 | (3) |
|
Parallel Coordinates: Quick Overview |
|
|
671 | (5) |
|
|
671 | (1) |
|
|
672 | (2) |
|
Nonlinear Multivariate Relations: Hypersurfaces |
|
|
674 | (2) |
|
|
676 | (6) |
|
|
|
|
|
|
|
682 | (1) |
|
|
682 | (1) |
|
The Basic Principles of Matrix Visualization |
|
|
683 | (7) |
|
Presentation of the Raw Data Matrix |
|
|
684 | (2) |
|
Seriation of Proximity Matrices and the Raw Data Matrix |
|
|
686 | (4) |
|
Generalization and Flexibility |
|
|
690 | (3) |
|
Summarizing Matrix Visualization |
|
|
690 | (1) |
|
|
691 | (1) |
|
|
692 | (1) |
|
|
692 | (1) |
|
|
693 | (4) |
|
Comparison with Other Graphical Techniques |
|
|
697 | (3) |
|
Matrix Visualization of Binary Data |
|
|
700 | (4) |
|
Similarity Measure for Binary Data |
|
|
700 | (2) |
|
Matrix Visualization of the KEGG Metabolism Pathway Data |
|
|
702 | (2) |
|
Other Modules and Extensions of MV |
|
|
704 | (1) |
|
|
704 | (1) |
|
MV for Covariate Adjustment |
|
|
704 | (1) |
|
|
705 | (1) |
|
Modeling Proximity Matrices |
|
|
705 | (1) |
|
|
705 | (5) |
|
Visualization in Bayesian Data Analysis |
|
|
|
|
|
|
|
|
710 | (2) |
|
The Role of EDA in Model Comprehension and Model-Checking |
|
|
710 | (1) |
|
Comparable Non-Bayesian Approaches |
|
|
711 | (1) |
|
Using Visualization to Understand and Check Models |
|
|
712 | (4) |
|
Using Statistical Graphics in Model-Based Data Analysis |
|
|
712 | (1) |
|
Bayesian Exploratory Data Analysis |
|
|
712 | (3) |
|
Hierarchical Models and Parameter Naming Conventions |
|
|
715 | (1) |
|
|
715 | (1) |
|
Example: A Hierarchical Model of Structure in Social Networks |
|
|
716 | (5) |
|
Posterior Predictive Checks |
|
|
720 | (1) |
|
Challenges Associated with the Graphical Display of Bayesian Inferences |
|
|
721 | (1) |
|
Integrating Graphics and Bayesian Modeling |
|
|
722 | (1) |
|
|
722 | (4) |
|
Programming Statistical Data Visualization in the Java Language |
|
|
|
|
|
|
|
726 | (1) |
|
Basics of Statistical Graphics Libraries and Java Programming |
|
|
727 | (8) |
|
Required Functions for Statistical Graphics Libraries |
|
|
727 | (2) |
|
Advantages of Java for Programming Statistical Graphics |
|
|
729 | (1) |
|
|
730 | (1) |
|
|
731 | (2) |
|
|
733 | (1) |
|
|
733 | (2) |
|
Design and Implementation of a Java Graphics Library |
|
|
735 | (18) |
|
|
735 | (2) |
|
Summary of Basic Interfaces and Classes with an Example |
|
|
737 | (3) |
|
Classes for Original Data |
|
|
740 | (2) |
|
Classes for Data about Basic Graphics |
|
|
742 | (1) |
|
Classes for Drawing Basic Graphics |
|
|
743 | (1) |
|
Classes of Panels for Drawing |
|
|
744 | (1) |
|
Classes for Interactive Operations |
|
|
745 | (6) |
|
Classes for Tables of Data |
|
|
751 | (1) |
|
A Class for Building Complicated Graphics |
|
|
751 | (2) |
|
|
753 | (5) |
|
Web-Based Statistical Graphics using XML Technologies |
|
|
|
|
|
|
|
758 | (1) |
|
The Web, Statistics and Statistical Graphics |
|
|
758 | (1) |
|
XML and Statistical Graphics |
|
|
759 | (1) |
|
XML-Based Vector Graphics Formats |
|
|
759 | (6) |
|
|
759 | (6) |
|
|
765 | (6) |
|
|
765 | (1) |
|
|
765 | (3) |
|
Implementation of Interactive Functionality via JavaScript |
|
|
768 | (3) |
|
|
771 | (6) |
|
|
771 | (3) |
|
|
774 | (3) |
|
X3D Scatter Plot Function of R |
|
|
777 | (1) |
|
|
777 | (17) |
|
SVG Application as Teachware |
|
|
777 | (1) |
|
Application to Three-Dimensional Representations |
|
|
778 | (1) |
|
|
779 | (5) |
|
Authoring Tool for SVG Statistical Graphics in R |
|
|
784 | (10) |
|
IV. Selected Applications |
|
|
|
Visualization for Genetic Network Reconstruction |
|
|
|
|
|
|
794 | (1) |
|
Visualization for Data Preprocessing |
|
|
794 | (2) |
|
|
794 | (1) |
|
|
795 | (1) |
|
Visualization for Genetic Network Reconstruction |
|
|
796 | (18) |
|
Clustering and Graphical Models |
|
|
797 | (2) |
|
A Time-lagged Correlation Approach |
|
|
799 | (2) |
|
A Smooth Response Surface Approach |
|
|
801 | (1) |
|
|
802 | (4) |
|
A Pattern Recognition Approach |
|
|
806 | (8) |
|
Reconstruction, Visualization and Analysis of Medical Images |
|
|
|
|
|
814 | (1) |
|
|
815 | (4) |
|
|
819 | (3) |
|
Magnetic Resonance Images |
|
|
822 | (4) |
|
Conclusion and Discussion |
|
|
826 | (6) |
|
Exploratory Graphics of a Financial Dataset |
|
|
|
|
|
|
|
832 | (1) |
|
|
833 | (1) |
|
|
834 | (3) |
|
|
837 | (4) |
|
|
841 | (2) |
|
|
843 | (1) |
|
Initial Comparisons Between Bankrupt Companies |
|
|
844 | (4) |
|
Investigating Bigger Companies |
|
|
848 | (3) |
|
|
851 | (1) |
|
|
852 | (2) |
|
Graphical Data Representation in Bankruptcy Analysis |
|
|
|
|
|
|
Company Rating Methodology |
|
|
854 | (3) |
|
|
857 | (2) |
|
|
859 | (1) |
|
|
860 | (5) |
|
Conversion of Scores into PDs |
|
|
865 | (2) |
|
|
867 | (4) |
|
|
871 | (3) |
|
Visualizing Functional Data with an Application to eBay's Online Auctions |
|
|
|
|
|
|
|
|
874 | (2) |
|
Online Auction Data from eBay |
|
|
876 | (1) |
|
Visualization at the Object Recovery Stage |
|
|
877 | (5) |
|
Visualizing Functional Observations |
|
|
882 | (8) |
|
Visualizing Individual Objects and Their Dynamics |
|
|
882 | (4) |
|
Visualizing Relationships Among Functional Data |
|
|
886 | (1) |
|
Visualizing Functional and Cross-sectional Information |
|
|
887 | (3) |
|
Interactive Information Visualization of Functional and Cross-sectional Information via TimeSearcher |
|
|
890 | (5) |
|
Capabilities of TimeSearcher |
|
|
891 | (3) |
|
Forecasting with TimeSearcher |
|
|
894 | (1) |
|
Further Challenges and Future Directions |
|
|
895 | (5) |
|
Concurrency of Functional Events |
|
|
897 | (1) |
|
Dimensionality of Functional Data |
|
|
897 | (1) |
|
Complex Functional Relationships |
|
|
897 | (3) |
|
Visualization Tools for Insurance Risk Processes |
|
|
|
|
|
|
900 | (2) |
|
|
902 | (1) |
|
Fitting Loss and Waiting Time Distributions |
|
|
902 | (10) |
|
|
902 | (5) |
|
Limited Expected Value Function |
|
|
907 | (1) |
|
|
908 | (4) |
|
Risk Process and its Visualization |
|
|
912 | (9) |
|
|
912 | (3) |
|
|
915 | (1) |
|
|
916 | (3) |
|
|
919 | (2) |
Subject Index |
|
921 | |