Atjaunināt sīkdatņu piekrišanu

E-grāmata: Handbook of Face Recognition

Edited by , Edited by , Edited by
  • Formāts: EPUB+DRM
  • Izdošanas datums: 29-Dec-2023
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783031435676
  • Formāts - EPUB+DRM
  • Cena: 213,54 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: EPUB+DRM
  • Izdošanas datums: 29-Dec-2023
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783031435676

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

The history of computer-aided face recognition dates to the 1960s, yet the problem of automatic face recognition a task that humans perform routinely and effortlessly in our daily lives still poses great challenges, especially in unconstrained conditions.

This highly anticipated new edition provides a comprehensive account of face recognition research and technology, spanning the full range of topics needed for designing operational recognition systems. After a thorough introduction, each subsequent chapter focuses on a specific topic, reviewing background information, up-to-date techniques, and recent results, as well as offering challenges and future directions.

Topics and features:









Fully updated, revised, and expanded, covering the entire spectrum of concepts, methods, and algorithms for automated detection and recognition systems Provides comprehensive coverage of face detection, alignment, feature extraction, and recognition technologies, and issues in evaluation, systems, security, and applications Contains numerous step-by-step algorithms Describes a broad range of applications from person verification, surveillance, and security, to entertainment Presents contributions from an international selection of preeminent experts Integrates numerous supporting graphs, tables, charts, and performance data





This practical and authoritative reference is an essential resource for researchers, professionals and students involved in image processing, computer vision, biometrics, security, Internet, mobile devices, human-computer interface, E-services, computer graphics and animation, and the computer game industry.
Part I: Introduction and Background.- 1. Overview on Face recognition.-
2. Historical Developments and Challenges.-
3. Applications.- Part II:
Fundamentals of Deep Neural Networks.- 4. Overview on Deep Learning for FR.-
5. Deep Neural Network Architecture Design.-
6. Loss Function Design.-
7.
Auto-Encoders.-
8. Convolutional Neural Networks.-
9. Generative Adversarial
Networks.-
10. Transfer Learning and Domain Adaptation.-
11. Deep Learning
with Big/Small Data.-
12. Model Compression and Speedup.-
13. Programming
Platforms for Deep Learning.- Part III: Face Recognition by Deep Neural
Networks.- 14. Overview on Face Recognition Methods.-
15. Preprocessing
Methods.-
16. Face Localization Detection.-
17. Face Localization Landmark.-
18. Visual Face Recognition.-
19. Multispectral Face Recognition.-
20. Fusion
for Face Recognition.
Dr. Stan Z. Li is Chair Professor of Artificial Intelligence at Westlake University, Hangzhou, China. His Springer titles include Encyclopedia of Biometrics (with Dr. Jain) and Handbook of Remote Biometrics, among others.

Dr. Anil K. Jain is a University Distinguished Professor in the Department of Computer Science and Engineering at Michigan State University, USA. His Springer titles include Introduction to Biometrics and Handbook of Fingerprint Recognition, among others. 

Jiankang Deng is a researcher and honorary lecturer at the Department of Computing, Imperial College London, UK.  He is one of the main contributors to the widely used open-source platform Insight face.