Atjaunināt sīkdatņu piekrišanu

E-grāmata: Handbook of Lapping and Polishing

Edited by , Edited by (Saitama University, Japan), Edited by (University of Toledo, Ohio, USA)
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 262,98 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Lapping and polishing are currently the most precise surface finishing processes for mechanical and electronic components. Unfortunately, most improvements in either methods or understanding of the physical processes involved are closely guarded as proprietary information. The Handbook of Lapping and Polishing is the first source in English to bring to the light of day the physical fundamentals and advanced technologies at the leading edge of modern lapping and polishing practice.

Collecting decisive work contributed by industrial and academic experts from the USA, Germany, and Japan, this authoritative resource presents the latest lapping and polishing technologies along with case studies that illustrate their value. After a brief introduction, the book explains the fundamental concepts and major types of lapping and polishing processes. The discussion then turns to lapping of ductile and brittle materials followed by an in-depth look at lapping machines and equipment. Rounding out the presentation, the final chapters discuss polishing technologies and equipment as well as the latest on chemical-mechanical polishing (CMP) and its applications in the semiconductor industry.

Offering an integrated approach to both theory and practical applications under a single cover, the Handbook of Lapping and Polishing supplies a definitive survey of the most advanced surface finishing technologies available.
Chapter 1 Introduction 1
Ioan Marinescu
1.1 From Craft to Science
1
1.2 Importance of the Abrasive
3
1.3 Problem Solving
4
References
5
Chapter 2 Fundamentals of Lapping 7
Eckart Uhlmann
2.1 General Considerations
9
2.2 Historical Development of Lapping
9
2.3 Definition of Lapping and Classification of Lapping Processes
12
2.4 Process Mechanisms and Subsurface Damage in Lapping
15
2.4.1 Material Removal and Grain Engagement Mechanisms in Case of Ductile Materials
16
2.4.2 Material Removal and Grain Engagement Mechanisms in Case of Brittle-Hard Materials
17
2.4.3 Influence of the Specification of the Lapping Abrasive on the Grain Engagement and on the Material Removal
21
2.4.4 Subsurface Damage
22
2.5 Lapping Process as a Removal System
24
2.5.1 Removal System
24
2.5.2 Subsurface Stress
25
2.5.3 Surface Formation
25
2.5.4 Subsurface Damage
25
2.5.5 Parameters of the Removal System
26
2.5.6 Subsurface-Related Work Result
27
2.5.7 Process Parameters of Lapping
27
2.5.8 Formation of the Removal System
27
2.5.9 Working Gap
29
2.6 Tool Specification
29
2.6.1 Lapping Tools
29
2.6.2 Lapping Wheels
31
2.6.3 Slurry
31
2.6.4 Lapping Medium
32
2.6.5 Lapping Abrasives
32
2.6.6 Process Grain Size Distribution
33
2.7 Machine Settings
34
2.7.1 Engagement Pressure
34
2.7.2 Process Kinematics
34
2.8 Fundamentals of Planetary Kinematics
35
Thomas Ardelt
2.8.1 Definition
35
2.8.1.1 Macrokinematics
36
2.8.1.2 Path Curve
36
2.8.1.3 Path Movement
37
2.8.1.4 Cycle and Part Cycle
37
2.8.1.5 Microkinematics
37
2.8.2 Geometrical and Kinematical Parameters of the Relative Movement
37
2.8.3 Calculation of Path Curves and Movements
39
2.8.3.1 Path Curve
40
2.8.3.2 Path Velocity
40
2.8.3.3 Path Acceleration and Scalar Acceleration
41
2.8.3.4 Path Curvature
41
2.8.4 Description of the Movement Pattern by Means of the Rotational Speed Ratio
41
2.8.4.1 Definition of the Rotational Speed Ratio
41
2.8.4.2 Kinematical Parameters
42
2.8.4.3 Possible Path Movements
44
2.8.4.4 Determination of the Path Pattern of a Workpiece Point
46
2.8.4.5 Progression of the Path Velocity
48
2.8.5 Calculation of the Path Length Distribution over the Lapping Wheel Radius
49
2.8.5.1 Profile and Grain Wear during Machining
49
2.8.5.2 Description of Workpiece Geometry by the Geometric Function
50
2.8.5.3 Path Length Distribution
51
2.8.6 Cutting Conditions in the Case of One-Sided and Two-Sided Machining
54
2.9 Process Models and Simulation
57
2.9.1 Process Model According to Imanaka
58
2.9.2 Process Model According to Chauhan et al
59
2.9.3 Process Model According to Buijs and Korpel-van Houten
61
2.9.4 Summarizing Assessment of Process Mode1s According to Imanaka, Chauhan et al., and Buijs and Korpel-van Houten
62
2.9.5 Process Model According to Engel
63
2.9.5.1 Model Boundary Conditions and Validity Limits
63
2.9.5.2 Tool Formation
64
2.9.5.3 Tool Engagement
67
2.9.5.4 Model Verification
70
2.9.6 Process Model According to Evans
72
Uwe Heisel
2.9.7 Process Model According to Heisel
73
Uwe Heisel
Symbols and Abbreviations
81
References
85
Chapter 3 Lapping of Ductile Materials 93
Ioan Marinescu, Ion Benea, and Naga Jyothi Sanku
3.1 Introduction
93
3.2 Physics of the Process
97
3.2.1 Lap Plate
99
3.2.2 Abrasives
102
3.2.3 Abrasive Slurry
105
3.2.4 Condition Rings
107
3.2.5 Parts Carriers
108
3.2.6 Carrier
108
3.2.7 Auto Stirrer
109
3.2.8 Lapping Methods
109
3.2.8.1 Single-Side Lapping
109
3.2.8.2 Double-Side Lapping
111
3.2.8.3 Cylindrical Lapping
113
3.2.8.4 Lapping with Bonded Abrasives
114
3.2.9 Advantages of Lapping Process
114
3.3 Mechanism of the Process
115
3.3.1 Two-Body and Three-Body Abrasion Mechanisms
118
References
120
Bibliography
121
Chapter 4 Lapping of Brittle Materials 123
Ioan Marinescu, Ion Benea, and Mariana Pruteanu
4.1 Introduction
125
4.2 Background Information
127
Mariana Pruteanu
4.2.1 Ceramic Materials
127
4.2.2 Fundamentals of Lapping Process
129
4.2.2.1 Lapping Plate
129
4.2.2.2 Abrasive
130
4.2.2.3 Lapping Fluid
132
4.2.3 Two-Body and Three-Body Abrasive Mechanisms
133
4.2.4 Tool Formation and Material-Removal Mechanisms in Lapping Process
137
4.2.5 Characteristics of the Lapping Process
141
4.3 Nontraditional Lapping Processes
142
Hitoshi Suwabe and Ken-ichi Ishikawa
4.3.1 Vibration Lapping
142
4.3.2 Lapping Using Low-Frequency Vibration
143
4.3.2.1 Principle and Features of Vibration Lapping
143
4.3.2.2 Low-Frequency Vibration Lapping Model and Experimental Technique
146
4.3.2.3 Processing Characteristics and Mechanism
147
4.3.2.4 Processing Surface Roughness
151
4.3.3 Low-Frequency Vibration Correcting of Lapping Plate Using Rectangular Correcting Carrier
152
4.3.3.1 Correcting of Lapping Plate
152
4.3.3.2 Friction Distance Characteristics of Rectangular Correcting Carrier
153
4.3.3.3 Experimental Apparatus and Method
155
4.3.3.4 Correcting Process by Rectangular Correcting Carrier
156
4.3.4 Lapping by Ultrasonic Vibration
158
4.3.4.1 Principle of Ultrasonic Exciter
158
4.3.4.2 Application to Lapping of Ultrasonic Vibration
158
4.4 ELID-Lap Grinding
159
Hitoshi Ohmori
4.4.1 Introduction
159
4.4.2 Principle of ELID-Lap Grinding
160
4.4.3 Experimental Systems
162
4.4.4 Experimental Method
163
4.4.5 Characteristics of ELID-Lap Grinding
163
4.4.5.1 Effects of Grain Size on Surface Roughness and Removal Mechanism
163
4.4.5.2 Efficient Mirror Surface Finish by ELID-Lap Grinding
165
4.4.6 Desk-Top ELID-Lap Grinding System
166
4.4.6.1 Background
166
4.4.6.2 Concept of the System
167
4.4.7 Experimental System and Method
168
4.4.7.1 Experimental System
168
4.4.7.2 Experimental Method
168
4.4.8 Experimental Results
168
4.4.8.1 Grinding Characteristics of Cemented Carbide Alloy
168
4.4.8.2 Grinding Characteristics of Nitrided Steel
170
4.4.8.3 Grinding Characteristics of Sapphire
172
4.4.9 Conclusions
174
4.5 Materials, Experimental Setup, and Testing Procedure (Study Case)
174
Mariana Pruteanu
4.5.1 Materials
174
4.5.1.1 Workpiece Materials
174
4.5.1.2 Abrasives
177
4.5.2 Experimental Equipment and Lapping Setup
178
4.5.3 Testing Procedure
182
4.5.3.1 Lapping Setup
182
4.5.3.2 Measuring Procedures
184
4.6 Experimental Results and Discussion
188
Mariana Pruteanu
4.6.1 Test A
188
4.6.2 Test B
204
4.6.3 Summary of Test A and Test B
211
4.6.4 Test C
212
4.6.4.1 Fractional Factorial Experiment
214
4.6.5 Modeling of Lapping Process
235
4.6.6 Conclusions of the Case Study
242
References
244
Bibliography
246
Appendix A
249
Appendix B
261
Chapter 5 Lapping and Lapping Machines 265
Toshiro K. Doi and Daizo Ichikawa
5.1 Introduction
265
5.2 Processing Principles of the Lapping and Its Characteristics
266
5.2.1 Lapping Factors
267
5.2.1.1 Motion Type
267
5.2.1.2 Lap (Lapping Plate)
268
5.2.1.3 Abrasives and Reagent in the Lapping Slurry
268
5.2.1.4 Mechanical Lapping Conditions
268
5.2.2 Processing Accuracy in the Lapping
269
5.2.2.1 Conditioning Ring
269
5.2.2.2 Cooling of Lapping Plate and Cooling Device
270
5.2.2.3 Grooves in the Lapping Plate
271
5.3 Lapping Machine
272
5.3.1 Oscar-Type Lens Lapping Machine
272
5.3.2 Conditioning Ring Type Lapping Machine
273
5.3.3 Both-Sides Simultaneous Lapping Machine
274
5.4 Both-Sides Simultaneous Lapping Machine Equipped with a New Micromotion Mechanism
275
5.5 Conclusions
278
References
279
Chapter 6 Polishing Technology 281
Toshiro K. Doi
6.1 Polishing Principles
282
Toshiro K. Doi
6.2 Processing Accuracy and Damaged Layer
283
Toshio Kasai
6.3 Polishing Machines
286
Toshio Kasai
6.3.1 Single-Side Polishing
286
6.3.1.1 Metallurgical Polishing Machine and Rough Lapping Machine
287
6.3.1.2 Glass-Lens-Polishing Machine
288
6.3.1.3 Conditioning Ring-Type Polishing Machine and Ring-Tool Polishing Machine
289
6.3.1.4 Nonspherical Surface Polishing Machine
290
6.3.2 Double-Sided Polishing
291
Toshio Kasai
6.4 Mechanochemical Polishing and Chemical Mechanical Polishing
292
Toshiro K. Doi
6.4.1 Mechanochemical Polishing
293
6.4.2 Chemical Mechanical Polishing
296
6.4.2.1 Progress of MCP–CMP
296
6.4.2.2 Requirements for Polishing
297
6.4.2.3 Basic Mechanism of CMP for Silicon Crystal
298
6.4.2.4 Examples of Polishing Characteristics
301
6.5 Noncontact Polishing
305
Toshio Kasai
6.6 Magnetoabrasive Finishing 307
Hitomi Yamaguchi
6.6.1 Introduction
307
6.6.2 Outline of Magnetoabrasive Finishing
307
6.6.3 Advantages of Magnetoabrasive Finishing
308
6.6.4 Internal Finishing of Nonferromagnetic Bent Tubes
309
6.6.5 Edge and Surface Finishing of Access Arms of Magnetic Disk Units
310
6.7 Polishing Process Applying Electrophoretic Deposition
312
Junichi Ikeno
6.7.1 Introduction
312
6.7.2 Electrophoretic Deposition
312
6.7.3 Development of EPD Pellets
312
6.7.4 Experimental Results
315
6.7.5 Conclusion
317
6.8 Electroabrasive Mirror Polishing Process
317
Junichi Ikeno
6.8.1 Introduction
317
6.8.2 Description
318
6.8.3 Manual Polishing and Its Automation
319
6.8.4 Experimental Results
319
6.8.5 Conclusion
322
6.9 P-MAC Polishing 324
Toshio Kasai
6.9.1 Analysis on the Mechanism of Various Polishing Methods
324
6.9.2 P-MAC Polishing for Small Pieces of GaAs Single Crystals
327
6.9.2.1 Processing Efficiency
327
6.9.2.2 Accuracy
328
6.9.2.3 Surface Roughness
328
6.9.3 P-MAC Polishing Machine Manufacturing and GaAs Wafer Polishing
329
6.10 Colloidal Silica Polishing
331
Toshiro K. Doi
References
33
Chapter 7 Chemical Mechanical Polishing and Its Applications in ULSI Process 341
Toshiro K. Doi
7.1 Orientations and Role of CMP in Semiconductor Process
343
Toshiro K. Doi
7.1.1 Relation of Planarization CMP with ULSI Device Process
343
7.1.2 Ultraprecision Polishing and CMP in the Fabrication Process of ULSI Devices
344
7.1.2.1 Outline of ULSI Device Fabrication Process
345
7.1.2.2 Ultraprecision Polishing and CMP of Bare Silicon Wafers
346
7.1.3 Planarization CMP and Its Roles
349
7.1.3.1 Reasons for Planarization
349
7.1.3.2 Background for Introducing Planarization CMP and Its Application Process
350
7.2 Basic Concept of Planarization CMP
354
Toshiro K. Doi
7.2.1 Basics of CMP—Progress of Ultraprecision Polishing and Its Applications
356
7.2.2 Requirements and Points to Be Noted for Planarization CMP
357
7.2.3 Basic Design Concept of CMP System
359
7.2.4 Works to Be Polished by CMP and Defects Caused by Polishing
359
7.3 Basic Technology of Planarization CMP
363
7.3.1 CMP Machine System
363
Toshiro K. Doi
7.3.1.1 Polishing Station
365
7.3.1.2 Cleaning Station
369
7.3.2 Slurries for CMP
370
Masaharu Kinoshita
7.3.2.1 Basis of CMP Slurries
370
7.3.2.2 ILD CMP Slurry
371
7.3.2.3 STI CMP Slurry
373
7.3.2.4 W-CMP Slurry
381
7.3.2.5 Cu CMP Slurry
386
7.3.3 Pads for Planarization CMP
396
Masanohu Hanazono and Masaharu Kinoshita
7.3.3.1 Basic Properties of the CMP Polishing Pad
396
7.3.3.2 Pad Conditioning and Polishing Performance
404
7.3.3.3 Improvement for New Pads
411
7.3.4 Modeling and Simulation of CMP Processes
414
Masaharu Kinoshita
7.3.4.1 Purpose of Modeling
414
7.3.4.2 Modeling of Planarization Process
415
7.3.4.3 Modeling of the Polishing Pad and Planarization
424
7.3.4.4 Modeling of Slurry Behavior
431
7.4 The Study Case of Device Wafer
436
Keisuke Suzuki
7.4.1 Introduction of CMP Technology
437
7.4.2 History of CMP Technology
439
7.4.3 Device Integration and CMP
443
7.4.3.1 Device Fabrication
443
7.4.3.2 Problems in Integration
444
7.4.4 Present State of the CMP Development
449
7.4.4.1 STI–CMP
449
7.4.4.2 Tungsten CMP
452
7.4.4.3 Cu and Low-k CMP
452
7.4.5 Development of Endpoint Detection Method
458
7.4.6 Future Prospects
459
7.5 Thin Film Magnetic Recording Heads
460
Masanobu Hanazono
7.5.1 Structure and Read and Write Mechanism of Thin Film Magnetic Head
460
7.5.2 CMP Process for Thin Film Magnetic Heads
463
7.5.2.1 Smoothing of Alumina Basecoat Film Surface
463
7.5.2.2 Bottom Shield CMP
464
7.5.2.3 Bottom Pole and Top Shield CMP
465
7.5.2.4 Cu Damascene Process
466
7.5.2.5 Overcoat CMP
467
7.6 CMP of Compound Semiconductor Wafers
468
Toshiro K. Doi
7.6.1 Polishing Characteristics of GaAs Crystal Wafers
469
7.6.2 Polishing Characteristics of CdTe Crystal Wafers
471
References
473
Index 479


Marinescu, Ioan D.; Uhlmann, Eckart; Doi, Toshiro