Atjaunināt sīkdatņu piekrišanu

E-grāmata: Handbook of Liquids-Assisted Laser Processing

(Department of Electrical and Information Engineering, University of Oulu, Finland)
  • Formāts: PDF+DRM
  • Izdošanas datums: 07-Jul-2010
  • Izdevniecība: Elsevier Science Ltd
  • Valoda: eng
  • ISBN-13: 9780080555041
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 196,29 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Izdošanas datums: 07-Jul-2010
  • Izdevniecība: Elsevier Science Ltd
  • Valoda: eng
  • ISBN-13: 9780080555041
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Laser processing of solid materials has been commonly performed in gas ambient. Having the workpiece immersed into liquid, having a liquid film on it, or soaking the material with liquid gives several advantages such as removal of the debris, lowering the heat load on the workpiece, and confining the vapour and plasma, resulting in higher shock pressure on the surface.
Introduced in the 1980s, neutral liquids assisted laser processing (LALP) has proved to be advantageous in the cutting of heat-sensitive materials, shock peening of machine parts, cleaning of surfaces, fabrication of micro-optical components, and for generation of nanoparticles in liquids. The liquids used range from water through organic solvents to cryoliquids.
The primary aim of the book is to present the essentials of previous research (tabulated data of experimental conditions and results), and help researchers develop new processing and diagnostics techniques (presenting data of liquids and a review of physical phenomena associated with LALP). Engineers can use the research results and technological innovation information to plan their materials processing tasks.
Laser processing in liquids has been applied to a number of different tasks in various fields such as mechanical engineering, microengineering, chemistry, optics, and bioscience. A comprehensive glossary with definitions of the terms and explanations has been added.
The book covers the use of chemically inert liquids under normal conditions. Laser chemical processing examples are presented for comparison only.

- First book in this rapidly growing field impacting mechanical and micro/nano-engineering
- Covers different kinds of liquid-assisted laser processing of a large variety of materials
- Covers lasers emitting from UV to IR with pulse lengths down to femtoseconds
- Reviews over 500 scientific articles and 300 inventions and tabulates their main features
- Gives a qualitative and quantitative description of the physical phenomena associated with LALP
- Tabulates 61 parameters for 100 liquids
- Glossary of over 200 terms and abbreviations
Foreword ix
Introduction
1(10)
LALP Chronology
4(2)
Laser Processing and Analysis of Liquid Systems That Are Not Covered in This Book
6(2)
Inventions in Liquids-Assisted Laser Processing
8(3)
Cleaning
11(58)
Introduction
11(1)
Principles of Liquids-Assisted Laser Cleaning
12(5)
Particles removal by frontside laser irradiation (steam laser cleaning)
12(1)
Particles removal by backside laser irradiation
12(1)
Removal of particles by laser-generated acoustic waves in liquid
13(1)
Liquid-assisted laser shock cleaning
13(1)
Removal of particles by bubble collapse induced flow
13(1)
Removal of surface layers by laser ablation/spallation in liquid
14(1)
Removal of frozen gas and liquid layers from optical surfaces
15(1)
Laser-generated shock wave enhanced scale removal
16(1)
Removal of organic contaminants by water decomposition products
16(1)
Cleaning of surfaces through contaminants dissolution in laser-generated supercritical solution
16(1)
Dehydroxylation of a silica glass surface
16(1)
Ice-assisted laser particles removal
17(1)
Particles on Solid Surfaces
17(13)
Adhesion phenomena and adhesion forces
17(8)
Adhesion force theories considering the deformation of the particle and the substrate
25(5)
Experimental Techniques in Laser Wet/Steam Cleaning Research
30(7)
Preparation of particles covered surfaces
30(1)
Application of liquid and monitoring the liquid film thickness and condition
31(2)
Complete cleaning systems
33(1)
Measuring and monitoring techniques in steam laser cleaning
33(4)
Physics and Phenomenology of Liquids-Assisted Laser Removal of Particles from Surfaces
37(32)
Detailed description of the standard steam cleaning process
37(1)
Optical effects
37(1)
Acceleration and inertial effects
37(2)
Heating and phase change (absorbing substrate, non-absorbing liquid)
39(4)
Hydrodynamic effects
43(1)
Particles removal threshold and efficiency in steam laser cleaning
44(1)
Effect of capillary condensed water in `dry' laser cleaning
45(24)
Shock Processing
69(74)
Introduction
69(1)
Residual Stresses and Their Measurement
70(7)
Laser Shock Peening
77(63)
Introduction
77(1)
Experimental techniques
77(4)
Shock pressure
81(1)
Shock propagation and wave phenomena
82(2)
Shock-induced changes in materials
84(4)
Mathematical models of laser shock peening
88(15)
Applications of laser peening
103(37)
Laser Shock Forming and Cladding
140(1)
Forming
140(1)
Cladding
140(1)
Densification of Porous Materials
141(2)
Substractive Processing
143(66)
Frontside Machining
143(28)
Introduction
143(2)
Frontside micromachining
145(22)
High-power laser underwater and water-assisted cutting
167(4)
Liquid-Jet-Guided Laser Beam Machining
171(6)
Applications and performance
174(1)
Molten salt-jet-guided laser beam
174(3)
Water at Backside of an Opaque Material
177(1)
Backside Machining of Transparent Materials
177(25)
Introduction
177(4)
Technologies, phenomenology, and etching mechanisms
181(21)
Machining of Liquid-Containing Materials
202(1)
Rock drilling
202(1)
Biological materials
202(1)
Laser Cleaving of Crystals in Water and of Water-Containing Crystals
203(6)
Breaking of single-crystal silicon wafers
203(1)
Cleaving of protein crystals
203(6)
Generation and Modification of Particles
209(52)
Introduction
209(1)
Optical Properties of Small Particles
210(3)
Experimental Techniques of Particles Generation
213(1)
Metal Particles
214(26)
Introduction
214(1)
Mechanisms determining the particles size
214(3)
Modification of suspending particles by laser irradiation
217(23)
Inorganic Compound Particles
240(10)
Hydrothermal growth
240(10)
Silicon and Amorphous Carbon Particles
250(1)
Diamond and DLC Particles and Films
250(8)
Organic Particles
258(3)
Surface Modification, Deposition of Thin Films, Welding, and Cladding
261(20)
Surface Modification
261(1)
Modification of surfaces of inorganic materials
261(1)
Modification surfaces of organic materials
262(1)
Deposition and Transfer of Thin Films
262(15)
Laser ablation deposition in water vapour
262(4)
Laser ablation deposition using a liquid target
266(6)
Laser ablation deposition using frozen target
272(1)
Forward transfer from solution (LIFT, MDW)
273(4)
Welding and Cladding Under Water
277(4)
Physics and Chemistry of Laser--Liquid--Solid Interactions
281(34)
Laser Beams and Their Propagation
281(7)
Properties of Gaussian beams
282(3)
Reflection of light
285(2)
Propagation of Gaussian beams
287(1)
Phase Change Phenomena
288(7)
Overall phenomenology
288(1)
Vaporization from free liquid surfaces
289(1)
Nucleation of vapour bubbles
290(2)
Bubble dynamics
292(3)
Optical Breakdown of Liquids and Plasma
295(7)
Photoionization of a dielectric liquid
295(1)
Cascade ionization (avalanche ionization)
296(1)
Photoionization absorption coefficients of atoms
297(1)
Thermal ionization
297(1)
Diffusion loss of electrons from the plasma
297(1)
Recombination loss
298(1)
Thermal conductivity of the plasma
298(1)
Rate equation for free electrons
298(1)
Internal energy density of electrons and particles in plasma
299(1)
Energy balance equation for electrons
299(1)
Heat flux conducted from plasma to adjacent matter
300(1)
Dependence of optical breakdown threshold on laser pulse length
300(1)
Factors affecting the breakdown threshold in liquids
300(1)
Temperatures and pressures at laser breakdown and ablation in water
301(1)
Shock Waves in Liquids and Solids
302(4)
Laser-Induced Reactions of Carbon with Organic Solvents and Water
306(2)
Reactions of carbon with organic solvents
306(2)
Reactions of carbon with water
308(1)
Behaviour of Oxides in High Temperature Water and Water Vapour
308(7)
Liquids and Their Properties
315(72)
Introduction
315(17)
Properties of 100 Selected Liquids
332(47)
Properties of Water
379(8)
References 387(36)
Glossary 423(18)
Subject index 441(10)
Liquids 451


Arvi Kruusing was born in 1950 in Tallinn, Estonia. He received his PhD in vacuum, plasma and semiconductor electronics in 1988 and Dr.Eng. in mechanics in 1998. He has contributed to lasers and photonic devices development, has studied water-assisted laser processing and is teaching laser processing at University of Oulu.