Atjaunināt sīkdatņu piekrišanu

E-grāmata: Handbook of Mobility Data Mining, Volume 3: Mobility Data-Driven Applications

Edited by (Assistant Professor, Center for Spatial Information Science, University of Tokyo, Tokyo, Japan; Researcher, School of Business Society and Engineering, Mälardalen University, Sweden; Senior Scientist, Locationmind Inc., Tokyo, Japan)
  • Formāts: EPUB+DRM
  • Izdošanas datums: 29-Jan-2023
  • Izdevniecība: Elsevier - Health Sciences Division
  • Valoda: eng
  • ISBN-13: 9780443184239
  • Formāts - EPUB+DRM
  • Cena: 126,16 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: EPUB+DRM
  • Izdošanas datums: 29-Jan-2023
  • Izdevniecība: Elsevier - Health Sciences Division
  • Valoda: eng
  • ISBN-13: 9780443184239

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Handbook of Mobility Data Mining: Volume Three: Mobility Data-Driven Applications introduces the fundamental technologies of mobile big data mining (MDM), advanced AI methods, and upper-level applications, helping readers comprehensively understand MDM with a bottom-up approach. The book explains how to preprocess mobile big data, visualize urban mobility, simulate and predict human travel behavior, and assess urban mobility characteristics and their matching performance as conditions and constraints in transport, emergency management, and sustainability development systems. The book contains crucial information for researchers, engineers, operators, administrators, and policymakers seeking greater understanding of current technologies' infra-knowledge structure and limitations.

The book introduces how to design MDM platforms that adapt to the evolving mobility environment—and new types of transportation and users—based on an integrated solution that utilizes sensing and communication capabilities to tackle significant challenges faced by the MDM field. This third volume looks at various cases studies to illustrate and explore the methods introduced in the first two volumes, covering topics such as Intelligent Transportation Management, Smart Emergency Management—detailing cases such as the Fukushima earthquake, Hurricane Katrina, and COVID-19—and Urban Sustainability Development, covering bicycle and railway travel behavior, mobility inequality, and road and light pollution inequality.

  • Introduces MDM applications from six major areas: intelligent transportation management, shared transportation systems, disaster management, pandemic response, low-carbon transportation, and social equality
  • Uses case studies to examine possible solutions that facilitate ethical, secure, and controlled emergency management based on mobile big data
  • Helps develop policy innovations beneficial to citizens, businesses, and society
  • Stems from the editor’s strong network of global transport authorities and transport companies, providing a solid knowledge structure and data foundation as well as geographical and stakeholder coverage

Part I: Intelligent Transportation Management 1. Mobile Big Data in Dynamic Road Pricing System
2. Mobile Big Data in P2P Bidding System for Transportation Services
3. Mobile Big Data in Bicycle-sharing System
4. Mobile Big Data in Ride-sharing System
5. Mobile Big Data in Customized Bus System

Part II: Smart Emergency Management 6. Mobile Big Data in Disaster Migration detection
7. Mobile Big Data in Disaster Relief Detection
8. Mobile Big Data in Social Close Contact Detection
9. Mobile Big Data in Pandemic Simulation
10. Mobile Big Data in Pandemic Prediction

Part III: Urban Sustainability Development 11. Mobile Big Data in Bicycle Travel Behaviour
12. Mobile Big Data in Railway Travel Behaviour
13. Mobile Big Data in Mobility Inequality
14. Mobile Big Data in Road Pollution Inequality
15. Mobile Big Data in Light Pollution Inequality

Haoran (Ronan) Zhang is Assistant Professor in the Center for Spatial Information Science at the University of Tokyo, a Researcher at the School of Business Society and Engineering at Mälardalen University in Sweden, and Senior Scientist at Locationmind Inc. in Japan. His research includes smart supply chain technologies, GPS data in shared transportation, urban sustainable performance, GIS technologies in renewable energy systems, and smart cities. He is author of numerous journal articles and Editorial Board Member of several international academic journals. He has Ph.D.s in both Engineering and Sociocultural Environment and was awarded Excellent Young Researcher by Japans Ministry of Education, Culture, Sports, Science and Technology.