List of Figures |
|
xix | |
List of Tables |
|
xxxiii | |
Preface |
|
xxxv | |
Contributors |
|
xxxvii | |
I Overview |
|
1 | (14) |
|
1 Overview of the Handbook |
|
|
3 | (12) |
|
|
3 | (1) |
|
1.2 A Brief History of Neuroimaging |
|
|
4 | (1) |
|
|
4 | (3) |
|
|
7 | (4) |
|
|
8 | (1) |
|
1.4.2 Methods in Structural Neuroimaging |
|
|
8 | (1) |
|
1.4.3 Localizing Areas of Activation |
|
|
9 | (1) |
|
|
9 | (1) |
|
1.4.5 Analysis of Electroencephalograms |
|
|
10 | (1) |
|
1.4.6 Multi-Modal Analysis |
|
|
10 | (1) |
|
|
11 | (1) |
|
|
11 | (1) |
|
1.5.2 Experimental Design in fMRI |
|
|
11 | (1) |
|
1.5.3 Experimental Design in EEG |
|
|
11 | (1) |
|
|
12 | (1) |
|
|
12 | (1) |
|
|
13 | (2) |
II Imaging Modalities |
|
15 | (188) |
|
2 Positron Emission Tomography: Some Analysis Methods |
|
|
17 | (18) |
|
|
|
17 | (2) |
|
|
19 | (1) |
|
2.3 Tracer Kinetic Modelling: Compartmental Approaches |
|
|
20 | (4) |
|
2.3.1 Plasma Input Functions Models |
|
|
20 | (3) |
|
2.3.2 Reference Tissue Models |
|
|
23 | (1) |
|
2.4 Estimation and Statistical Methods |
|
|
24 | (3) |
|
2.4.1 Non-Linear Least Squares |
|
|
24 | (1) |
|
2.4.2 Basis Function Methods |
|
|
25 | (1) |
|
|
26 | (1) |
|
2.5 Other Modelling Approaches |
|
|
27 | (2) |
|
|
27 | (1) |
|
2.5.2 Bayesian Approaches |
|
|
28 | (1) |
|
2.5.3 Non-Parametric Approaches |
|
|
28 | (1) |
|
2.6 Further Modelling Considerations |
|
|
29 | (1) |
|
|
30 | (5) |
|
3 Structural Magnetic Resonance Imaging |
|
|
35 | (30) |
|
|
|
|
|
36 | (1) |
|
|
37 | (3) |
|
|
38 | (1) |
|
3.2.2 Image Reconstruction |
|
|
38 | (1) |
|
|
38 | (1) |
|
|
39 | (1) |
|
|
40 | (11) |
|
|
40 | (1) |
|
3.3.1.1 Volumetric Registration |
|
|
41 | (1) |
|
3.3.1.2 Surface-Based Registration |
|
|
41 | (2) |
|
|
43 | (1) |
|
3.3.2.1 Foreground from Background Segmentation |
|
|
43 | (1) |
|
3.3.2.2 Brain Tissue Segmentation |
|
|
44 | (1) |
|
3.3.3 Templates and Atlases |
|
|
45 | (1) |
|
|
46 | (1) |
|
3.3.4.1 Subcortical Volumes |
|
|
46 | (1) |
|
3.3.4.2 Voxel-Based Morphometry |
|
|
47 | (1) |
|
3.3.4.3 Deformation- and Tensor-Based Morphometry |
|
|
47 | (1) |
|
3.3.4.4 Surface-Based Measures |
|
|
48 | (1) |
|
3.3.4.5 Other Morphometric Measures |
|
|
49 | (1) |
|
3.3.5 Statistical Analyses |
|
|
50 | (1) |
|
3.3.5.1 Statistical Parametric Maps |
|
|
51 | (1) |
|
|
51 | (2) |
|
3.4.1 Structural Integrity and Tumor Detection |
|
|
51 | (1) |
|
3.4.2 Anatomical References for Functional Imaging |
|
|
52 | (1) |
|
3.4.3 Multi-Center Studies |
|
|
52 | (1) |
|
|
53 | (1) |
|
3.5 Glossary of MRI Terms |
|
|
53 | (1) |
|
|
54 | (11) |
|
4 Diffusion Magnetic Resonance Imaging (dMRI) |
|
|
65 | (44) |
|
|
|
4.1 Introduction to Diffusion MRI |
|
|
66 | (4) |
|
4.1.1 Diffusion Weighted Imaging (DWI) |
|
|
66 | (1) |
|
4.1.1.1 Diffusion Gradient Sequence |
|
|
66 | (1) |
|
|
67 | (1) |
|
4.1.1.3 Restricted Diffusion |
|
|
67 | (2) |
|
4.1.2 Diffusion Tensor Imaging (DTI) |
|
|
69 | (1) |
|
4.1.2.1 Scalar Indices and Eigenvectors of Diffusion Tensor |
|
|
69 | (1) |
|
4.2 High Angular Resolution Diffusion Imaging (HARDI) |
|
|
70 | (9) |
|
4.2.1 Generalization of Diffusion Tensor Imaging |
|
|
70 | (1) |
|
4.2.1.1 Mixture of Tensor Model |
|
|
70 | (1) |
|
4.2.1.2 Generalized DTI (GDTI) |
|
|
71 | (1) |
|
4.2.1.3 High-Order Tensor Model, ADC-Based Model |
|
|
72 | (1) |
|
4.2.2 Diffusion Spectrum Imaging (DSI) |
|
|
73 | (1) |
|
4.2.3 Hybrid Diffusion Imaging (HYDI) |
|
|
74 | (1) |
|
4.2.4 Q-Ball Imaging (QBI) |
|
|
75 | (1) |
|
4.2.4.1 Original Q-Ball Imaging |
|
|
75 | (1) |
|
4.2.4.2 Exact Q-Ball Imaging |
|
|
76 | (1) |
|
4.2.5 Diffusion Orientation Transform (DOT) |
|
|
77 | (1) |
|
4.2.6 Spherical Deconvolution (SD) |
|
|
77 | (1) |
|
4.2.7 Diffusion Propagator Imaging (DPI) |
|
|
77 | (1) |
|
4.2.8 Simple Harmonic Oscillator Reconstruction and Estimation (SHORE) |
|
|
78 | (1) |
|
4.2.9 Spherical Polar Fourier Imaging (SPFI) |
|
|
78 | (1) |
|
|
79 | (4) |
|
4.3.1 Noise Components and Voxelwise Estimation Methods |
|
|
79 | (1) |
|
4.3.2 Spatial-Adaptive Estimation Methods |
|
|
80 | (3) |
|
4.4 Tractography Algorithms |
|
|
83 | (3) |
|
4.5 Uncertainty in Estimated Diffusion Quantities |
|
|
86 | (1) |
|
|
87 | (2) |
|
|
89 | (1) |
|
|
90 | (3) |
|
|
93 | (2) |
|
|
93 | (1) |
|
|
94 | (1) |
|
|
95 | (1) |
|
|
96 | (13) |
|
5 A Tutorial for Multisequence Clinical Structural Brain MRI |
|
|
109 | (30) |
|
|
|
|
|
|
110 | (4) |
|
5.1.1 What Are These Images? |
|
|
112 | (1) |
|
5.1.2 How Can We Handle sMRI? |
|
|
113 | (1) |
|
5.1.3 What Are Some Major Pitfalls When Starting Working on sMRI? |
|
|
114 | (1) |
|
5.2 Data Structure and Intuitive Description of Associated Problems |
|
|
114 | (1) |
|
5.3 Acquisition and Reconstruction |
|
|
115 | (1) |
|
|
116 | (13) |
|
5.4.1 Inhomogeneity Correction |
|
|
117 | (1) |
|
|
118 | (1) |
|
5.4.1.2 Practical Approaches, Software, and Application to Data |
|
|
118 | (1) |
|
|
119 | (1) |
|
|
119 | (1) |
|
5.4.2.2 Practical Approaches, Software, and Application to Data |
|
|
119 | (1) |
|
|
119 | (1) |
|
|
120 | (1) |
|
5.4.3.2 Practical Approaches, Software, and Application to Data |
|
|
121 | (1) |
|
5.4.4 Spatial Registration |
|
|
121 | (1) |
|
|
121 | (1) |
|
5.4.4.2 Practical Approaches, Software, and Application to Data |
|
|
123 | (3) |
|
5.4.5 Intensity Normalization |
|
|
126 | (1) |
|
|
127 | (1) |
|
5.4.5.2 Practical Approaches, Software, and Application to Data |
|
|
127 | (2) |
|
|
129 | (4) |
|
5.5.1 Lesion Segmentation |
|
|
129 | (1) |
|
|
130 | (1) |
|
5.5.3 Longitudinal and Cross Sectional Intensity Analysis |
|
|
131 | (2) |
|
|
133 | (1) |
|
|
133 | (6) |
|
6 Principles of Functional Magnetic Resonance Imaging |
|
|
139 | (36) |
|
|
|
|
139 | (2) |
|
6.2 The Basics of fMRI Data |
|
|
141 | (7) |
|
6.2.1 Principles of Magnetic Resonance Signal Generation |
|
|
141 | (1) |
|
|
141 | (1) |
|
|
142 | (1) |
|
|
143 | (1) |
|
|
144 | (2) |
|
|
146 | (2) |
|
|
148 | (5) |
|
6.3.1 Understanding BOLD fMRI |
|
|
148 | (2) |
|
6.3.2 Spatial Limitations |
|
|
150 | (1) |
|
6.3.3 Temporal Limitations |
|
|
151 | (1) |
|
6.3.4 Acquisition Artifacts |
|
|
152 | (1) |
|
6.4 Modeling Signal and Noise in fMRI |
|
|
153 | (4) |
|
|
153 | (2) |
|
6.4.2 Noise and Nuisance Signal |
|
|
155 | (2) |
|
|
157 | (1) |
|
|
158 | (2) |
|
|
160 | (5) |
|
|
160 | (2) |
|
|
162 | (2) |
|
|
164 | (1) |
|
|
165 | (1) |
|
6.9 Data Format, Databases, and Software |
|
|
166 | (2) |
|
|
168 | (1) |
|
|
169 | (6) |
|
7 Electroencephalography (EEG): Neurophysics, Experimental Methods, and Signal Processing |
|
|
175 | (28) |
|
|
|
|
|
175 | (2) |
|
7.2 The Neurophysics of EEG |
|
|
177 | (3) |
|
7.3 Synchronization and EEG |
|
|
180 | (2) |
|
|
182 | (1) |
|
|
183 | (1) |
|
|
184 | (3) |
|
7.7 Stationary Data Analysis |
|
|
187 | (7) |
|
7.8 Nonstationary Data Analysis |
|
|
194 | (3) |
|
|
197 | (1) |
|
|
197 | (6) |
III Statistical Methods And Models |
|
203 | (424) |
|
8 Image Reconstruction in Functional MRI |
|
|
205 | (28) |
|
|
|
205 | (1) |
|
8.2 The Fourier Transform |
|
|
206 | (8) |
|
8.2.1 One-Dimensional Fourier Transform |
|
|
206 | (4) |
|
8.2.2 Two-Dimensional Fourier Transform |
|
|
210 | (4) |
|
8.3 FMRI Acquisition and Reconstruction |
|
|
214 | (6) |
|
8.3.1 The Signal Equation and k-Space Coverage |
|
|
214 | (3) |
|
8.3.2 Nyquist Ghost k-Space Correction |
|
|
217 | (3) |
|
|
220 | (8) |
|
8.4.1 Reconstruction Isomorphism Representation |
|
|
220 | (2) |
|
8.4.2 Image Processing Implications |
|
|
222 | (6) |
|
8.5 Additional Topics and Discussion |
|
|
228 | (2) |
|
8.5.1 Complex-Valued fMRI Activation |
|
|
229 | (1) |
|
|
230 | (1) |
|
|
230 | (1) |
|
|
230 | (3) |
|
9 Statistical Analysis on Brain Surfaces |
|
|
233 | (30) |
|
|
|
|
|
234 | (1) |
|
9.2 Surface Parameterization |
|
|
235 | (4) |
|
9.2.1 Local Parameterization by Quadratic Polynomial |
|
|
236 | (1) |
|
|
236 | (1) |
|
9.2.3 Spherical Harmonic Representation |
|
|
237 | (2) |
|
|
239 | (2) |
|
9.3.1 Affine Registration |
|
|
239 | (1) |
|
9.3.2 SPHARM Correspondence |
|
|
239 | (2) |
|
9.3.3 Diffeomorphic Registration |
|
|
241 | (1) |
|
9.4 Cortical Surface Features |
|
|
241 | (2) |
|
|
241 | (1) |
|
9.4.2 Surface Area and Curvatures |
|
|
242 | (1) |
|
|
242 | (1) |
|
9.5 Surface Data Smoothing |
|
|
243 | (5) |
|
9.5.1 Diffusion Smoothing |
|
|
243 | (2) |
|
9.5.2 Iterated Kernel Smoothing |
|
|
245 | (1) |
|
9.5.3 Heat Kernel Smoothing |
|
|
246 | (2) |
|
9.6 Statistical Inference on Surfaces |
|
|
248 | (6) |
|
9.6.1 General Linear Models |
|
|
248 | (1) |
|
9.6.2 Multivariate General Linear Models |
|
|
249 | (1) |
|
9.6.3 Small-n Large-p Problems |
|
|
250 | (1) |
|
9.6.4 Longitudinal Models |
|
|
251 | (1) |
|
9.6.5 Random Field Theory |
|
|
252 | (2) |
|
|
254 | (9) |
|
10 Neuroimage Preprocessing |
|
|
263 | (46) |
|
|
|
|
264 | (3) |
|
10.2 Principles for Studying and Optimizing Preprocessing Pipelines |
|
|
267 | (3) |
|
10.2.1 The Utility of Simulated Datasets |
|
|
268 | (1) |
|
10.2.2 Quantifying the Impact of Preprocessing Changes |
|
|
268 | (1) |
|
10.2.3 The Neuroscientific Importance of Preprocessing Choices |
|
|
269 | (1) |
|
10.3 Metrics for Evaluating Neuroimaging Pipelines |
|
|
270 | (7) |
|
|
271 | (1) |
|
10.3.2 Cluster Overlap Metrics |
|
|
271 | (1) |
|
10.3.3 Intra-Class Correlation Coefficient |
|
|
272 | (3) |
|
10.3.4 Spatial Pattern Reproducibility Using Correlations |
|
|
275 | (1) |
|
10.3.5 Similarity Metric Ranking Approaches |
|
|
275 | (1) |
|
10.3.6 Prediction Metrics |
|
|
276 | (1) |
|
10.3.7 Combined Prediction versus Spatial Reproducibility Metrics |
|
|
276 | (1) |
|
10.4 Preprocessing Pipeline Testing in the Literature |
|
|
277 | (3) |
|
10.4.1 Between-Subject, MRI Brain Registration |
|
|
277 | (1) |
|
10.4.2 Preprocessing for fMRI Resting-State Analysis |
|
|
278 | (2) |
|
10.4.3 Preprocessing for fMRI Task-Based Analysis |
|
|
280 | (1) |
|
10.5 A Case Study: Optimizing fMRI Task Preprocessing |
|
|
280 | (13) |
|
10.5.1 Optimization with Prediction and Reproducibility Metrics |
|
|
280 | (4) |
|
10.5.2 An Individual Subject's (P, R) Curves |
|
|
284 | (1) |
|
10.5.3 fMRI Preprocessing Pipeline Optimization with (P, R) Curves |
|
|
285 | (1) |
|
10.5.3.1 Some fMRI Datasets |
|
|
285 | (1) |
|
10.5.3.2 Selecting Optimal Preprocessing Pipeline Steps |
|
|
286 | (3) |
|
10.5.4 Fixed and Individually Optimized Preprocessing Pipelines |
|
|
289 | (3) |
|
10.5.5 Independent Tests of Pipeline Optimization Results |
|
|
292 | (1) |
|
10.6 Discussion of Open Problems and Pitfalls |
|
|
293 | (2) |
|
|
295 | (14) |
|
11 Linear and Nonlinear Models for fMRI Time Series Analysis |
|
|
309 | (26) |
|
|
|
|
|
309 | (1) |
|
11.2 The GLM: Single-Level Analysis |
|
|
310 | (2) |
|
11.3 Modeling the Hemodynamic Response Function in the Time Domain |
|
|
312 | (9) |
|
|
313 | (4) |
|
11.3.2 Nonparametric Models |
|
|
317 | (3) |
|
11.3.3 Comparison of Different HRF Estimation Methods |
|
|
320 | (1) |
|
11.4 Hemodynamic Response Estimation in the Frequency Domain |
|
|
321 | (1) |
|
11.5 Multi-Subject Analysis |
|
|
322 | (1) |
|
11.5.1 Semi-Parametric Approaches |
|
|
323 | (1) |
|
|
323 | (4) |
|
|
324 | (1) |
|
11.6.2 Volterra Series Model |
|
|
325 | (1) |
|
11.6.3 Bi-Exponential Nonlinear Model |
|
|
326 | (1) |
|
11.6.4 Volterra Series Models for Multi-Subject Data |
|
|
326 | (1) |
|
11.7 Summary and Future Directions |
|
|
327 | (1) |
|
|
328 | (7) |
|
12 Functional Neuroimaging Group Studies |
|
|
335 | (20) |
|
|
|
335 | (2) |
|
12.2 Variability of Brain Shape and Function |
|
|
337 | (2) |
|
12.3 Mixed-Effects and Fixed-Effects Analyses |
|
|
339 | (1) |
|
12.4 Group Analysis for Functional Neuroimaging |
|
|
339 | (5) |
|
12.4.1 Problem Setting and Notations |
|
|
340 | (1) |
|
|
341 | (1) |
|
12.4.3 Statistical Inference |
|
|
342 | (1) |
|
12.4.4 The Random Effects t-Test |
|
|
343 | (1) |
|
12.5 Taking into Account the Spatial Context in Statistical Inference |
|
|
344 | (2) |
|
12.6 Type I Error Control with Permutation Testing |
|
|
346 | (1) |
|
12.7 Illustration of Various Inference Strategies on an Example |
|
|
347 | (3) |
|
|
350 | (1) |
|
|
350 | (5) |
|
13 Corrections for Multiplicity in Functional Neuroimaging Data |
|
|
355 | (14) |
|
|
|
355 | (1) |
|
13.2 Control of Familywise Error Rate |
|
|
356 | (4) |
|
13.3 Control of False Discovery Rate |
|
|
360 | (2) |
|
13.4 Accounting for Spatial Dependence |
|
|
362 | (2) |
|
|
364 | (1) |
|
|
365 | (4) |
|
14 Functional Connectivity Analyses for fMRI Data |
|
|
369 | (30) |
|
|
|
|
369 | (2) |
|
14.2 Methods and Measures for FC |
|
|
371 | (5) |
|
|
371 | (1) |
|
14.2.2 Cross-Correlation and Partial Cross-Correlation |
|
|
371 | (1) |
|
14.2.3 Stability Selection |
|
|
372 | (1) |
|
14.2.4 Cross-Coherence and Partial Cross-Coherence |
|
|
373 | (1) |
|
14.2.5 Mutual Information |
|
|
374 | (1) |
|
14.2.6 Principal and Independent Components Analyses |
|
|
374 | (1) |
|
14.2.7 Time-Varying Connectivity |
|
|
375 | (1) |
|
|
376 | (5) |
|
|
378 | (3) |
|
14.4 Functional Connectivity Analysis of Resting-State fMRI Data |
|
|
381 | (3) |
|
14.4.1 Data Description and Preprocessing |
|
|
381 | (1) |
|
14.4.2 Overview of the Estimation Procedure |
|
|
382 | (1) |
|
|
382 | (2) |
|
14.5 Future Directions and Open Problems |
|
|
384 | (5) |
|
|
389 | (10) |
|
15 Multivariate Decompositions in Brain Imaging |
|
|
399 | (20) |
|
|
|
|
|
|
399 | (1) |
|
15.2 Principal Component Analysis and Singular Value Decomposition |
|
|
400 | (3) |
|
15.2.1 Singular Value Decomposition |
|
|
401 | (1) |
|
15.2.2 Principal Components Analysis |
|
|
401 | (1) |
|
15.2.3 PCA in Brain Imaging |
|
|
402 | (1) |
|
15.3 Structured PCA Models |
|
|
403 | (2) |
|
15.3.1 Calculation of High-Dimensional PCA |
|
|
404 | (1) |
|
15.4 Independent Component Analysis |
|
|
405 | (4) |
|
15.4.1 ICA in Brain Imaging |
|
|
406 | (1) |
|
15.4.2 Homotopic Group ICA |
|
|
407 | (1) |
|
15.4.3 Computation of High-Dimensional ICA |
|
|
407 | (2) |
|
15.5 Discussion of Other Methods |
|
|
409 | (2) |
|
|
411 | (1) |
|
|
411 | (8) |
|
16 Effective Connectivity and Causal Inference in Neuroimaging |
|
|
419 | (22) |
|
|
|
|
419 | (1) |
|
16.2 Effective Connectivity |
|
|
420 | (2) |
|
16.3 Models of Effective Connectivity |
|
|
422 | (10) |
|
16.3.1 Structural Equation Models |
|
|
422 | (5) |
|
16.3.2 Dynamic Causal Models |
|
|
427 | (2) |
|
|
429 | (3) |
|
16.4 Effective Connectivity and Causation |
|
|
432 | (3) |
|
|
435 | (1) |
|
|
436 | (5) |
|
|
441 | (26) |
|
|
|
|
|
441 | (2) |
|
17.2 Network Construction |
|
|
443 | (4) |
|
|
443 | (1) |
|
|
444 | (2) |
|
|
446 | (1) |
|
17.2.4 Thresholding Networks |
|
|
446 | (1) |
|
17.3 Descriptive Measures of Network Topology |
|
|
447 | (3) |
|
17.3.1 Characteristic Path Length |
|
|
447 | (1) |
|
17.3.2 Clustering Coefficient |
|
|
448 | (1) |
|
17.3.3 Degree Distribution |
|
|
449 | (1) |
|
|
450 | (5) |
|
17.4.1 Erdos-Renyi Random Graphs |
|
|
451 | (1) |
|
17.4.2 Small-World Networks |
|
|
452 | (1) |
|
17.4.3 Preferential Attachment |
|
|
453 | (1) |
|
17.4.4 Exponential Random Graph Models |
|
|
453 | (1) |
|
17.4.5 Stochastic Block Models |
|
|
454 | (1) |
|
17.5 Estimation and Comparison of Networks |
|
|
455 | (5) |
|
17.5.1 Statistical Parametric Networks |
|
|
456 | (1) |
|
17.5.2 Density-Integrated Topology |
|
|
457 | (1) |
|
17.5.3 Comparison of Weighted Networks |
|
|
458 | (2) |
|
|
460 | (1) |
|
|
460 | (7) |
|
18 Modeling Change in the Brain: Methods for Cross-Sectional and Longitudinal Data |
|
|
467 | (28) |
|
|
|
|
|
|
468 | (1) |
|
18.2 Notation and Road Map |
|
|
468 | (1) |
|
18.3 Cross-Sectional and Longitudinal Designs |
|
|
469 | (3) |
|
18.3.1 Cross-Sectional Designs |
|
|
470 | (1) |
|
18.3.2 Single-Cohort Longitudinal Designs |
|
|
470 | (1) |
|
18.3.3 Multi-Cohort Longitudinal Designs |
|
|
471 | (1) |
|
18.4 Region-Wise Linear Models for the Mean |
|
|
472 | (5) |
|
18.4.1 What Is v, and What Is t? |
|
|
472 | (1) |
|
18.4.2 Cross-Sectional Data |
|
|
473 | (1) |
|
|
473 | (1) |
|
18.4.3.1 Mixed-Effects Models |
|
|
473 | (1) |
|
|
474 | (1) |
|
18.4.4 Relative Efficiency for Estimating the Mean Function |
|
|
474 | (1) |
|
18.4.5 Complications Due to Misalignment |
|
|
475 | (2) |
|
18.4.6 Borrowing Information "Spatially" |
|
|
477 | (1) |
|
18.5 Nonlinear Models for the Mean |
|
|
477 | (5) |
|
|
477 | (1) |
|
18.5.2 Nonparametric and Semiparametric Models |
|
|
477 | (3) |
|
18.5.3 Analyses with Repeated Cross-Sectional Subsamples |
|
|
480 | (2) |
|
18.6 Beyond Modeling the Mean |
|
|
482 | (4) |
|
18.6.1 Individual-Specific Curves |
|
|
482 | (1) |
|
18.6.2 Modeling Components of Change: Longitudinal Functional Principal Component Analysis |
|
|
483 | (2) |
|
18.6.3 Modeling the Entire Age-Specific Distribution |
|
|
485 | (1) |
|
18.6.4 Modeling Local Rates of Change |
|
|
485 | (1) |
|
|
486 | (1) |
|
|
487 | (8) |
|
19 Joint fMRI and DTI Models for Brain Connectivity |
|
|
495 | (28) |
|
|
|
|
|
495 | (2) |
|
19.1.1 Structural Connectivity |
|
|
496 | (1) |
|
19.1.2 Functional Connectivity |
|
|
496 | (1) |
|
19.2 Single Modality Methods |
|
|
497 | (8) |
|
19.2.1 Methods for Functional Connectivity |
|
|
497 | (1) |
|
19.2.1.1 Defining the Spatial Scale for Connectivity Analysis |
|
|
497 | (1) |
|
19.2.1.2 Measures of Association |
|
|
498 | (1) |
|
19.2.1.3 Modeling Approaches |
|
|
499 | (1) |
|
19.2.1.4 Partitioning Methods |
|
|
500 | (1) |
|
|
500 | (2) |
|
19.2.2 Methods for Effective Connectivity |
|
|
502 | (1) |
|
19.2.3 Determining Structural Connectivity |
|
|
502 | (1) |
|
19.2.3.1 Diffusion Weighted Imaging and DTI |
|
|
503 | (1) |
|
|
504 | (1) |
|
19.3 Multimodal Approaches |
|
|
505 | (8) |
|
19.3.1 Sequential Procedures |
|
|
506 | (2) |
|
19.3.2 Functional Connectivity with Anatomical Weighting |
|
|
508 | (1) |
|
19.3.3 Modeling Joint Activation and Structural Connectivity |
|
|
509 | (1) |
|
19.3.3.1 Functional Coherence |
|
|
510 | (1) |
|
|
511 | (1) |
|
19.3.3.3 Likelihood Function |
|
|
511 | (1) |
|
|
512 | (1) |
|
19.3.5 Multimodal Prediction Methods |
|
|
512 | (1) |
|
|
513 | (2) |
|
|
515 | (8) |
|
20 Statistical Analysis of Electroencephalograms |
|
|
523 | (44) |
|
|
|
|
|
524 | (1) |
|
20.2 Spectral Analysis of a Single-Channel EEG |
|
|
524 | (17) |
|
20.2.1 Brief Description of the Data |
|
|
525 | (1) |
|
20.2.2 Fourier-Domain Approach |
|
|
525 | (1) |
|
20.2.2.1 The Fourier Regression Model and Variance Decomposition |
|
|
525 | (1) |
|
20.2.2.2 The Spectrum of a Single-Channel Time Series |
|
|
528 | (1) |
|
20.2.2.3 Estimating the Spectrum via Periodograms |
|
|
528 | (1) |
|
20.2.2.4 Other Periodogram-Based Estimation Methods |
|
|
531 | (1) |
|
20.2.2.5 Examples of Smoothing Periodograms |
|
|
531 | (1) |
|
20.2.2.6 Multitaper Method (MTM) |
|
|
531 | (1) |
|
20.2.3 Time-Domain Approach |
|
|
532 | (1) |
|
20.2.3.1 Moving Average (MA) Model |
|
|
532 | (1) |
|
20.2.3.2 Autoregressive (AR) Model |
|
|
533 | (1) |
|
20.2.3.3 Autoregressive Moving Average (ARMA) Model |
|
|
534 | (1) |
|
20.2.3.4 The Spectra of MA, AR and ARMA Processes |
|
|
535 | (1) |
|
20.2.3.5 Second-Order Autoregressive [ AR(2)] Model |
|
|
537 | (1) |
|
20.2.3.6 Estimating the Spectrum |
|
|
538 | (1) |
|
20.2.4 Estimating the Spectrum Using Multiple EEG Traces |
|
|
539 | (1) |
|
20.2.4.1 Other Averaged Estimators |
|
|
539 | (1) |
|
20.2.4.2 Estimating Power in Specific Frequency Bands |
|
|
540 | (1) |
|
20.2.4.3 Detecting Outliers |
|
|
540 | (1) |
|
20.2.5 Confidence Intervals |
|
|
540 | (1) |
|
20.3 Spectral Analysis of Multichannel EEG |
|
|
541 | (10) |
|
20.3.1 Fourier-Domain Approach |
|
|
542 | (1) |
|
20.3.1.1 The Fourier-Cramer Representation |
|
|
542 | (1) |
|
20.3.1.2 The Spectral Matrix of an EEG |
|
|
542 | (1) |
|
20.3.1.3 Non-Parametric Estimator of the Spectral Matrix |
|
|
544 | (1) |
|
20.3.2 Time-Domain Approach |
|
|
544 | (1) |
|
20.3.3 Estimating Partial Coherence |
|
|
545 | (3) |
|
20.3.4 Estimating the Spectral Matrix Using Multiple EEG Traces |
|
|
548 | (1) |
|
20.3.4.1 Estimating the Spectral Matrix in Specific Frequency Bands |
|
|
549 | (1) |
|
20.3.5 Modeling and Inference on Connectivity |
|
|
549 | (1) |
|
20.3.5.1 Granger Causality |
|
|
550 | (1) |
|
20.3.5.2 Partial Directed Coherence (PDC) |
|
|
550 | (1) |
|
20.3.5.3 Summary of Metrics for Connectivity |
|
|
551 | (1) |
|
20.4 Spectral Analysis for High-Dimensional Data |
|
|
551 | (4) |
|
20.4.1 Methods for Fitting VAR Model on Multivariate Time Series |
|
|
552 | (1) |
|
20.4.1.1 Least Squares Estimation |
|
|
552 | (1) |
|
|
552 | (1) |
|
|
553 | (1) |
|
20.4.2 EEG Data Analysis via LASSLS Methods |
|
|
554 | (1) |
|
20.4.2.1 VAR Modeling on High-Dimensional Multichannel EEG |
|
|
554 | (1) |
|
20.4.2.2 Inference on Directed Connectivity |
|
|
555 | (1) |
|
20.5 Source Localization and Estimation |
|
|
555 | (7) |
|
20.5.1 Overview of Source Models for EEG Data |
|
|
555 | (1) |
|
20.5.1.1 Dipole Source Model |
|
|
556 | (1) |
|
20.5.1.2 Independent Source Model |
|
|
558 | (1) |
|
20.5.1.3 A Generalized Model of EEG Signals |
|
|
559 | (1) |
|
20.5.2 Inverse Source Reconstruction |
|
|
559 | (1) |
|
20.5.2.1 Parametric Methods |
|
|
559 | (1) |
|
|
560 | (1) |
|
|
562 | (1) |
|
|
562 | (5) |
|
21 Advanced Topics for Modeling Electroencephalograms |
|
|
567 | (60) |
|
|
|
|
|
|
|
568 | (4) |
|
|
572 | (8) |
|
21.2.1 Proposal: The Spectral Merger Clustering Method |
|
|
572 | (1) |
|
21.2.1.1 Total Variation Distance |
|
|
572 | (1) |
|
21.2.1.2 Hierarchical Spectral Merger Algorithm |
|
|
573 | (1) |
|
21.2.2 Analysis of Epileptic Seizure EEG Data |
|
|
574 | (6) |
|
21.3 Change-Point Detection |
|
|
580 | (8) |
|
21.3.1 Existing Methods and Challenges |
|
|
580 | (2) |
|
21.3.2 The FreSpeD Method |
|
|
582 | (1) |
|
21.3.2.1 Comparison to the Other Approaches |
|
|
584 | (1) |
|
21.3.3 Analysis of the Multichannel Seizure EEG Data |
|
|
585 | (1) |
|
21.3.3.1 Seizure Localization |
|
|
585 | (1) |
|
21.3.3.2 Seizure Onset Estimation and Potential Precursors |
|
|
585 | (3) |
|
21.4 Modeling Time-Varying Connectivity Using Switching Vector Autoregressive Models |
|
|
588 | (11) |
|
21.4.1 Background on Vector Autoregressive (VAR) Models |
|
|
589 | (1) |
|
21.4.1.1 Stationary VAR Model |
|
|
589 | (1) |
|
21.4.1.2 Time-Varying VAR Model |
|
|
590 | (1) |
|
21.4.1.3 Switching VAR (SVAR) Model |
|
|
591 | (1) |
|
21.4.2 Parameter Estimation |
|
|
592 | (1) |
|
21.4.3 Estimating Dynamic Connectivity States in Epileptic EEG |
|
|
593 | (6) |
|
21.5 Best Signal Representation for Non-Stationary EEGs |
|
|
599 | (9) |
|
21.5.1 Overview of Signal Representations |
|
|
599 | (1) |
|
21.5.2 Overview of SLEX Analysis |
|
|
600 | (3) |
|
21.5.3 Selecting the Best SLEX Signal Representation |
|
|
603 | (3) |
|
21.5.4 SLEX Analysis of Multichannel Seizure EEG |
|
|
606 | (2) |
|
21.6 Dual-Frequency Coherence Analysis |
|
|
608 | (10) |
|
21.6.1 Overview and Historical Development |
|
|
610 | (2) |
|
21.6.2 The Local Dual-Frequency Cross-Periodogram |
|
|
612 | (1) |
|
21.6.3 Formalizing the Concept of Evolutionary Dual-Frequency Spectra |
|
|
612 | (1) |
|
21.6.3.1 Harmonizable Process: Discretized Frequencies |
|
|
612 | (1) |
|
21.6.3.2 A New Model: The Time-Dependent Harmonizable Process |
|
|
613 | (1) |
|
21.6.3.3 Dual-Frequency Coherence between Bands |
|
|
613 | (1) |
|
21.6.4 Inference on Local Dual Frequency Coherence |
|
|
614 | (1) |
|
21.6.5 Local Dual Frequency Coherence Analysis of EEG Data |
|
|
615 | (1) |
|
21.6.5.1 Description of the Data and Experiment |
|
|
615 | (1) |
|
21.6.5.2 Implementation Details |
|
|
615 | (1) |
|
21.6.5.3 Results and Discussion |
|
|
616 | (1) |
|
|
617 | (1) |
|
|
618 | (3) |
|
|
621 | (6) |
Index |
|
627 | |