Preface |
|
xvii | |
Contributors |
|
xix | |
Introduction |
|
1 | (2) |
1 A Quantile Regression Memoir |
|
3 | (4) |
|
|
|
|
3 | (4) |
2 Resampling Methods |
|
7 | (14) |
|
|
|
7 | (1) |
|
|
8 | (1) |
|
2.3 Residual-based bootstrap |
|
|
9 | (2) |
|
2.4 Generalized bootstrap |
|
|
11 | (1) |
|
2.5 Estimating function bootstrap |
|
|
11 | (1) |
|
2.6 Markov chain marginal bootstrap |
|
|
12 | (1) |
|
2.7 Resampling methods for clustered data |
|
|
13 | (1) |
|
2.8 Resampling methods for censored quantile regression |
|
|
14 | (1) |
|
2.9 Bootstrap for post-model selection inference |
|
|
15 | (6) |
3 Quantile Regression: Penalized |
|
21 | (20) |
|
|
|
21 | (2) |
|
|
21 | (1) |
|
3.1.2 Regularization of ill-posed problems |
|
|
22 | (1) |
|
|
23 | (8) |
|
3.2.1 The finite differences of Whittaker and others |
|
|
23 | (1) |
|
3.2.2 Functions and their derivatives |
|
|
24 | (2) |
|
3.2.3 Quantile regression with smoothing splines |
|
|
26 | (2) |
|
3.2.4 Quantile smoothing splines |
|
|
28 | (1) |
|
3.2.5 Total-variation splines |
|
|
29 | (2) |
|
3.3 Penalized: what else? |
|
|
31 | (10) |
|
|
31 | (1) |
|
3.3.2 Multiple covariates |
|
|
32 | (2) |
|
3.3.3 Additive fits, confidence bandaids, and other phantasmagorias |
|
|
34 | (7) |
4 Bayesian Quantile Regression |
|
41 | (14) |
|
|
|
|
41 | (1) |
|
4.2 Asymmetric Laplace likelihood |
|
|
42 | (3) |
|
|
45 | (2) |
|
4.4 Nonparametric and semiparametric likelihoods |
|
|
47 | (4) |
|
4.4.1 Mixture-type likelihood |
|
|
47 | (2) |
|
4.4.2 Approximate likelihood via quantile process |
|
|
49 | (2) |
|
|
51 | (4) |
5 Computational Methods for Quantile Regression |
|
55 | (14) |
|
|
|
55 | (2) |
|
5.2 Exterior point methods |
|
|
57 | (1) |
|
5.3 Interior point methods |
|
|
58 | (2) |
|
|
60 | (1) |
|
5.5 First-order, proximal methods |
|
|
61 | (8) |
|
5.5.1 Proximal operators and the Moreau envelope |
|
|
61 | (3) |
|
5.5.2 Alternating direction method of multipliers |
|
|
64 | (1) |
|
5.5.3 Proximal performance |
|
|
65 | (4) |
6 Survival Analysis: A Quantile Perspective |
|
69 | (20) |
|
|
|
|
69 | (3) |
|
|
70 | (1) |
|
|
71 | (1) |
|
|
72 | (7) |
|
|
72 | (1) |
|
6.2.2 Nonparametric estimators |
|
|
73 | (2) |
|
6.2.2.1 Kaplan-Meier estimator |
|
|
73 | (2) |
|
6.2.2.2 Nelson-Aalen estimator |
|
|
75 | (1) |
|
|
75 | (4) |
|
6.2.3.1 Cox proportional hazards model |
|
|
75 | (1) |
|
6.2.3.2 Accelerated failure time model |
|
|
76 | (2) |
|
6.2.3.3 Aalen additive hazard model |
|
|
78 | (1) |
|
6.3 Quantile estimation based on censored data |
|
|
79 | (10) |
|
6.3.1 Quantile estimation |
|
|
79 | (1) |
|
6.3.2 Median and quantile regression |
|
|
80 | (2) |
|
6.3.3 Discussion and miscellanea |
|
|
82 | (7) |
7 Quantile Regression for Survival Analysis |
|
89 | (16) |
|
|
|
89 | (1) |
|
7.2 Quantile regression for randomly censored data |
|
|
90 | (7) |
|
7.2.1 Random right censoring with C always known |
|
|
90 | (1) |
|
7.2.2 Covariate-independent random right censoring |
|
|
91 | (1) |
|
7.2.3 Standard random right censoring |
|
|
92 | (3) |
|
7.2.3.1 Approaches based on the principle of self-consistency |
|
|
92 | (1) |
|
7.2.3.2 Martingale-based approach |
|
|
93 | (1) |
|
7.2.3.3 Locally weighted method |
|
|
94 | (1) |
|
7.2.4 Variance estimation and other inference |
|
|
95 | (2) |
|
7.2.4.1 Variance estimation |
|
|
95 | (1) |
|
7.2.4.2 Second-stage inference |
|
|
96 | (1) |
|
|
96 | (1) |
|
7.3 Quantile regression in other survival settings |
|
|
97 | (1) |
|
7.3.1 Known random left censoring and/or left truncation |
|
|
97 | (1) |
|
7.3.2 Censored data with a survival cure fraction |
|
|
98 | (1) |
|
7.4 An illustration of quantile regression for survival analysis |
|
|
98 | (7) |
8 Survival Analysis with Competing Risks and Semi-competing Risks Data |
|
105 | (14) |
|
|
|
|
105 | (7) |
|
|
105 | (1) |
|
8.1.2 Cumulative incidence quantile regression |
|
|
106 | (2) |
|
8.1.3 Data analysis example |
|
|
108 | (2) |
|
8.1.4 Marginal quantile regression |
|
|
110 | (2) |
|
8.2 Semi-competing risks data |
|
|
112 | (4) |
|
|
112 | (1) |
|
8.2.2 Cumulative incidence quantile regression |
|
|
113 | (1) |
|
8.2.3 Marginal quantile regression |
|
|
114 | (2) |
|
8.3 Summary and open problems |
|
|
116 | (3) |
9 Instrumental Variable Quantile Regression |
|
119 | (26) |
|
|
|
|
|
120 | (1) |
|
|
121 | (8) |
|
9.2.1 The instrumental variable quantile regression model |
|
|
121 | (2) |
|
9.2.2 Conditions for point identification |
|
|
123 | (1) |
|
9.2.3 Discussion of the IVQR model |
|
|
124 | (2) |
|
|
126 | (2) |
|
9.2.5 Comparison to other approaches |
|
|
128 | (1) |
|
9.3 Basic estimation and inference approaches |
|
|
129 | (7) |
|
9.3.1 Generalized methods of moments and related approaches |
|
|
130 | (2) |
|
9.3.2 Inverse quantile regression |
|
|
132 | (2) |
|
9.3.2.1 A useful interpretation of IQR as a GMM estimator |
|
|
133 | (1) |
|
9.3.3 Weak identification robust inference |
|
|
134 | (2) |
|
9.3.4 Finite-sample inference |
|
|
136 | (1) |
|
9.4 Advanced inference with high-dimensional X |
|
|
136 | (3) |
|
9.4.1 Neyman orthogonal scores |
|
|
136 | (2) |
|
9.4.2 Estimation and inference using orthogonal scores |
|
|
138 | (1) |
|
|
139 | (6) |
10 Local Quantile Treatment Effects |
|
145 | (20) |
|
|
|
|
145 | (3) |
|
10.2 Framework, estimands and identification |
|
|
148 | (6) |
|
10.2.1 Without covariates |
|
|
148 | (3) |
|
10.2.2 In the presence of covariates: conditional LQTE |
|
|
151 | (1) |
|
10.2.3 In the presence of covariates: unconditional LQTE |
|
|
152 | (2) |
|
10.3 Estimation and inference |
|
|
154 | (1) |
|
|
155 | (3) |
|
10.4.1 Regression discontinuity design |
|
|
155 | (1) |
|
10.4.2 Multi-valued and continuous instruments |
|
|
156 | (1) |
|
10.4.3 Testing instrument validity |
|
|
157 | (1) |
|
10.5 Comparison to the instrumental variable quantile regression model |
|
|
158 | (2) |
|
10.6 Conclusion and open problems |
|
|
160 | (5) |
11 Quantile Regression with Measurement Errors and Missing Data |
|
165 | (20) |
|
|
|
165 | (1) |
|
11.2 Quantile regression with measurement errors |
|
|
166 | (6) |
|
11.2.1 Linear quantile regression with measurement errors |
|
|
166 | (5) |
|
11.2.1.1 Semiparametric joint estimating equations |
|
|
166 | (3) |
|
11.2.1.2 Other methods for linear quantile regression with measurement errors |
|
|
169 | (2) |
|
11.2.2 Nonparametric and semiparametric quantile regression model with measurement errors |
|
|
171 | (1) |
|
11.3 Quantile regression with missing data |
|
|
172 | (13) |
|
11.3.1 Statistical methods handling missing covariates in quantile regression |
|
|
173 | (5) |
|
11.3.1.1 Multiple imputation algorithm |
|
|
173 | (2) |
|
11.3.1.2 Modified MI algorithms |
|
|
175 | (2) |
|
|
177 | (1) |
|
|
178 | (1) |
|
11.3.2 Statistical methods handling missing outcomes in quantile regression |
|
|
178 | (9) |
|
11.3.2.1 Imputation approaches for missing outcomes |
|
|
178 | (2) |
|
11.3.2.2 Statistical methods for longitudinal dropout |
|
|
180 | (5) |
12 Multiple-Output Quantile Regression |
|
185 | (24) |
|
|
|
12.1 Multivariate quantiles, and the ordering of Rd, d > or = to 2 |
|
|
185 | (2) |
|
12.2 Directional approaches |
|
|
187 | (6) |
|
12.2.1 Projection methods |
|
|
187 | (2) |
|
12.2.1.1 Marginal (coordinatewise) quantiles |
|
|
187 | (1) |
|
12.2.1.2 Quantile biplots |
|
|
187 | (1) |
|
12.2.1.3 Directional quantile hyperplanes and contours |
|
|
188 | (1) |
|
12.2.1.4 Relation to halfspace depth |
|
|
189 | (1) |
|
12.2.2 Directional Koenker-Bassett methods |
|
|
189 | (4) |
|
12.2.2.1 Location case (p = 0) |
|
|
189 | (2) |
|
12.2.2.2 (Nonparametric) regression case (p > or = to 1) |
|
|
191 | (2) |
|
|
193 | (10) |
|
12.3.1 Spatial (geometric) quantile methods |
|
|
195 | (2) |
|
12.3.1.1 A spatial check function |
|
|
195 | (1) |
|
12.3.1.2 Linear spatial quantile regression |
|
|
196 | (1) |
|
12.3.1.3 Nonparametric spatial quantile regression |
|
|
197 | (1) |
|
12.3.2 Elliptical quantiles |
|
|
197 | (3) |
|
|
197 | (1) |
|
12.3.2.2 Linear regression case |
|
|
198 | (2) |
|
12.3.3 Depth-based quantiles |
|
|
200 | (11) |
|
12.3.3.1 Halfspace depth quantiles |
|
|
200 | (1) |
|
12.3.3.2 Monge-Kantorovich quantiles |
|
|
201 | (2) |
|
12.4 Some other concepts, and applications |
|
|
203 | (1) |
|
|
204 | (5) |
13 Sample Selection in Quantile Regression: A Survey |
|
209 | (16) |
|
|
|
|
209 | (2) |
|
13.2 Heckman's parametric selection model |
|
|
211 | (1) |
|
13.2.1 Two-step estimation in Gaussian models |
|
|
212 | (1) |
|
13.3 A quantile generalization |
|
|
212 | (4) |
|
13.3.1 A quantile selection model |
|
|
212 | (1) |
|
|
213 | (3) |
|
|
216 | (1) |
|
|
216 | (2) |
|
13.5.1 A likelihood approach |
|
|
217 | (1) |
|
13.5.2 Control function approaches |
|
|
217 | (1) |
|
13.5.3 Link to censoring corrections |
|
|
217 | (1) |
|
13.6 Empirical illustration |
|
|
218 | (3) |
|
|
221 | (4) |
14 Nonparametric Quantile Regression for Banach-Valued Response |
|
225 | (28) |
|
|
|
|
225 | (4) |
|
14.2 Regression quantiles in Banach spaces |
|
|
229 | (2) |
|
14.3 Nonparametric estimation |
|
|
231 | (1) |
|
|
232 | (8) |
|
|
232 | (2) |
|
|
234 | (1) |
|
14.4.3 Pediatric airway data |
|
|
234 | (3) |
|
|
237 | (3) |
|
14.4.4.1 Regression of price curve on sales curve |
|
|
237 | (3) |
|
|
240 | (9) |
|
14.5.1 Additional mathematical details |
|
|
245 | (4) |
|
|
249 | (4) |
15 High-Dimensional Quantile Regression |
|
253 | (20) |
|
|
|
|
|
253 | (3) |
|
15.2 Estimation of the conditional quantile function |
|
|
256 | (5) |
|
15.2.1 Regularity conditions |
|
|
256 | (1) |
|
15.2.2 Li-penalized quantile regression |
|
|
257 | (2) |
|
15.2.3 Refitted quantile regression after selection |
|
|
259 | (1) |
|
15.2.4 Group lasso for quantile regression models |
|
|
260 | (1) |
|
15.2.5 Estimation of the conditional density |
|
|
261 | (1) |
|
15.3 Confidence bands for the coefficient process |
|
|
261 | (12) |
|
15.3.1 Construction of an orthogonal score function |
|
|
263 | (2) |
|
15.3.2 Regularity conditions |
|
|
265 | (1) |
|
15.3.3 Score function estimator |
|
|
266 | (1) |
|
15.3.4 Double selection estimator |
|
|
267 | (1) |
|
|
267 | (2) |
|
15.3.6 Confidence bands via inverse statistics |
|
|
269 | (4) |
16 Nonconvex Penalized Quantile Regression: A Review of Methods, Theory and Algorithms |
|
273 | (20) |
|
|
|
273 | (2) |
|
16.2 High-dimensional sparse linear quantile regression |
|
|
275 | (4) |
|
16.2.1 Background on penalized high-dimensional regression and the choice of penalty function |
|
|
275 | (1) |
|
16.2.2 Nonconvex penalized high-dimensional linear quantile regression |
|
|
276 | (3) |
|
|
276 | (2) |
|
16.2.2.2 Oracle property of the nonconvex penalized quantile regression estimator |
|
|
278 | (1) |
|
16.3 High-dimensional sparse semiparametric quantile regression |
|
|
279 | (2) |
|
|
279 | (1) |
|
16.3.2 Nonconvex penalized partially linear additive quantile regression |
|
|
279 | (1) |
|
|
280 | (1) |
|
16.4 Computational aspects of nonconvex penalized quantile regression |
|
|
281 | (2) |
|
16.4.1 Linear programming based algorithms (moderately large p) |
|
|
281 | (1) |
|
16.4.2 New iterative coordinate descent algorithm (larger p) |
|
|
282 | (1) |
|
16.5 Other related problems |
|
|
283 | (2) |
|
16.5.1 Simultaneous estimation and variable selection at multiple quintiles |
|
|
283 | (1) |
|
16.5.2 Two-stage analysis with quantile-adaptive screening |
|
|
284 | (10) |
|
|
284 | (1) |
|
16.5.2.2 Quantile-adaptive model-free nonlinear screening |
|
|
284 | (1) |
|
|
285 | (8) |
17 QAR and Quantile Time Series Analysis |
|
293 | (40) |
|
|
|
293 | (1) |
|
17.2 Quantile regression estimation of traditional time series models |
|
|
294 | (5) |
|
17.2.1 Quantile regression estimation of the traditional AR model |
|
|
295 | (1) |
|
17.2.2 Quantile regressions of other time series models with i.i.d. errors |
|
|
296 | (1) |
|
17.2.3 Quantile regression estimation of ARMA models |
|
|
297 | (1) |
|
17.2.4 Quantile regressions with serially correlated errors |
|
|
298 | (1) |
|
17.3 Quantile regressions with ARCH/GARCH errors |
|
|
299 | (7) |
|
17.4 Quantile regressions with heavy-tailed errors |
|
|
306 | (1) |
|
17.5 Quantile regression for nonstationary time series |
|
|
307 | (5) |
|
17.5.1 Quantile regression for trending time series |
|
|
307 | (1) |
|
17.5.2 Unit-root quantile regressions |
|
|
308 | (2) |
|
17.5.3 Quantile regression on cointegrated time series |
|
|
310 | (2) |
|
|
312 | (8) |
|
17.6.1 The linear QAR process |
|
|
313 | (4) |
|
17.6.2 Nonlinear QAR models |
|
|
317 | (2) |
|
17.6.3 Quantile autoregression based on transformations |
|
|
319 | (1) |
|
17.7 Other dynamic quantile models |
|
|
320 | (2) |
|
17.8 Quantile spectral analysis |
|
|
322 | (6) |
|
17.8.1 Quantile cross-covariances and quantile spectrum |
|
|
323 | (1) |
|
17.8.2 Quantile periodograms |
|
|
324 | (1) |
|
17.8.3 Relationship to quantile regression on harmonic regressors |
|
|
325 | (2) |
|
17.8.4 Estimation of quantile spectral density |
|
|
327 | (1) |
|
17.9 Quantile regression based forecasting |
|
|
328 | (1) |
|
|
329 | (4) |
18 Extremal Quantile Regression |
|
333 | (30) |
|
|
|
|
|
334 | (2) |
|
18.2 Extreme quantile models |
|
|
336 | (2) |
|
18.2.1 Pareto-type and regularly varying tails |
|
|
336 | (1) |
|
18.2.2 Extremal quantile regression models |
|
|
337 | (1) |
|
18.3 Estimation and inference methods |
|
|
338 | (12) |
|
18.3.1 Sampling conditions |
|
|
338 | (1) |
|
18.3.2 Univariave case: Marginal quantiles |
|
|
338 | (6) |
|
18.3.2.1 Extreme order approximation |
|
|
339 | (1) |
|
18.3.2.2 Intermediate order approximation |
|
|
339 | (1) |
|
|
340 | (1) |
|
18.3.2.4 Estimation of AT |
|
|
341 | (1) |
|
18.3.2.5 Computing quantiles of the limit extreme value distributions |
|
|
342 | (1) |
|
18.3.2.6 Median bias correction and confidence intervals |
|
|
343 | (1) |
|
18.3.2.7 Extrapolation estimator for very extremes |
|
|
344 | (1) |
|
18.3.3 Multivariate case: Conditional quantiles |
|
|
344 | (6) |
|
18.3.3.1 Extreme order approximation |
|
|
345 | (1) |
|
18.3.3.2 Intermediate order approximation |
|
|
345 | (1) |
|
18.3.3.3 Estimation of and 7 |
|
|
346 | (1) |
|
18.3.3.4 Estimation of AT |
|
|
346 | (1) |
|
18.3.3.5 Computing quantiles of the limit extreme value distributions |
|
|
347 | (2) |
|
18.3.3.6 Median bias correction and confidence intervals |
|
|
349 | (1) |
|
18.3.3.7 Extrapolation estimator for very extremes |
|
|
349 | (1) |
|
18.3.4 Extreme value versus normal inference |
|
|
350 | (1) |
|
18.4 Empirical applications |
|
|
350 | (13) |
|
18.4.1 Value-at-risk prediction |
|
|
351 | (3) |
|
18.4.2 Contagion of financial risk |
|
|
354 | (9) |
19 Quantile Regression Methods for Longitudinal Data |
|
363 | (18) |
|
|
|
|
363 | (2) |
|
19.2 Panel quantile regression model |
|
|
365 | (1) |
|
19.3 Fixed effects estimation |
|
|
366 | (7) |
|
|
366 | (2) |
|
|
368 | (3) |
|
19.3.2.1 Bias correction: Analytical method |
|
|
369 | (1) |
|
19.3.2.2 Bias correction: Jackknife |
|
|
370 | (1) |
|
19.3.3 Alternative FE approaches |
|
|
371 | (3) |
|
|
371 | (1) |
|
19.3.3.2 Minimum distance |
|
|
371 | (1) |
|
19.3.3.3 Two-step estimation of Canay (2011) |
|
|
372 | (1) |
|
19.4 Correlated random effects |
|
|
373 | (1) |
|
|
374 | (4) |
|
|
374 | (1) |
|
|
374 | (2) |
|
19.5.3 Group-level treatments |
|
|
376 | (1) |
|
19.5.4 Semiparametric QR for longitudinal data |
|
|
377 | (1) |
|
|
378 | (3) |
20 Quantile Regression Applications in Finance |
|
381 | (28) |
|
|
|
|
381 | (2) |
|
20.2 Quantile regression in risk management |
|
|
383 | (8) |
|
|
383 | (5) |
|
20.2.2 Expected shortfall |
|
|
388 | (3) |
|
20.3 Upper quantile information and financial markets |
|
|
391 | (2) |
|
20.4 Quantile regression and portfolio allocation |
|
|
393 | (4) |
|
20.4.1 The mean-ES portfolio construction |
|
|
394 | (1) |
|
20.4.2 The multi-quantile portfolio construction |
|
|
395 | (2) |
|
20.5 Stochastic dominance and quantile regression |
|
|
397 | (2) |
|
|
399 | (4) |
|
20.6.1 Directional predictability via the quantilogram |
|
|
400 | (2) |
|
20.6.2 Causality in quantiles |
|
|
402 | (1) |
|
|
403 | (6) |
21 Quantile Regression for Genetic and Genomic Applications |
|
409 | (20) |
|
|
|
|
409 | (1) |
|
21.2 Genetic applications |
|
|
410 | (5) |
|
21.2.1 Background and definitions |
|
|
410 | (1) |
|
21.2.2 Candidate gene association study of child BMI |
|
|
411 | (1) |
|
21.2.3 GWAS of birthweight |
|
|
412 | (2) |
|
21.2.4 Genetic association with a set of markers |
|
|
414 | (1) |
|
21.3 Genomic and other -omic applications |
|
|
415 | (8) |
|
|
415 | (1) |
|
21.3.2 Genomic data pre-processing |
|
|
416 | (1) |
|
21.3.3 Sample size determination in gene expression studies |
|
|
417 | (2) |
|
21.3.4 Determination of chromosomal region aberrations |
|
|
419 | (1) |
|
21.3.5 Robust estimation and outlier determination in genomics |
|
|
420 | (2) |
|
21.3.6 Genomic analysis of set of genes |
|
|
422 | (1) |
|
|
423 | (6) |
22 Quantile Regression Applications in Ecology and the Environmental Sciences |
|
429 | (26) |
|
|
|
429 | (2) |
|
22.2 Water quality trends over time |
|
|
431 | (11) |
|
22.2.1 A single site within a watershed |
|
|
432 | (4) |
|
22.2.2 Multiple sites within a watershed |
|
|
436 | (1) |
|
22.2.3 Estimation with below-detection limit values in a single site within a watershed |
|
|
436 | (3) |
|
22.2.4 Additional extensions possible for water quality and flow trend analyses |
|
|
439 | (3) |
|
22.3 Herbaceous plant species diversity and atmospheric nitrogen deposition |
|
|
442 | (7) |
|
22.3.1 Quantile regression estimates |
|
|
444 | (1) |
|
22.3.2 Partial effects of nitrogen deposition and pH and critical loads |
|
|
444 | (5) |
|
22.3.3 Additional possible refinements to the model |
|
|
449 | (1) |
|
|
449 | (6) |
Index |
|
455 | |