Atjaunināt sīkdatņu piekrišanu

E-grāmata: Handbook of Rare Earth Elements: Analytics

Contributions by , Contributions by , Edited by , Contributions by , Contributions by , Contributions by , Contributions by , Contributions by , Contributions by , Contributions by
  • Formāts: 418 pages
  • Sērija : De Gruyter Reference
  • Izdošanas datums: 24-Apr-2017
  • Izdevniecība: De Gruyter
  • Valoda: eng
  • ISBN-13: 9783110391251
  • Formāts - EPUB+DRM
  • Cena: 209,70 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām
    • De Gruyter E-books
  • Formāts: 418 pages
  • Sērija : De Gruyter Reference
  • Izdošanas datums: 24-Apr-2017
  • Izdevniecība: De Gruyter
  • Valoda: eng
  • ISBN-13: 9783110391251

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

The Handbook of Rare Earth Elements focuses on the essential role of modern instrumental analytics in the recycling, purification and analysis of rare earth elements. Due to their numerous applications, e.g. in novel magnetic materials for computer hardware, mobile phones and displays, rare earth elements have become a strategic and valuable resource. The detailed knowledge of rare earth element contents at every step of their life cycle is of great importance.

This reference work was compiled with contribution from an international team of expert authors from Academia and Industry to presend a comprehensive discussion on the state-of-the-art of rare earth element analysis for industrial and scientific purposes, recycling processes and purification of REEs from various sources.

Written with Analytical Chemists, Inorganic Chemists, Spectroscopists as well as Industry Practitioners in mind, the Handbook of Rare Earth Elements is an indispensable reference for everyone working with rare earth elements.
Preface v
List of Contributing Authors xv
1 Introduction 1(3)
Alfred Golloch
References
3(1)
2 Analytics of Rare Earth Elements Basics and Methods 4(10)
Alfred Golloch
2.1 Electronic configurations of RE elements and analytical properties
4(2)
2.1.1 Chemistry of Ln3+ ions
5(1)
2.1.2 Chemistry of Ln2+ and Ln4+ ions
5(1)
2.2 The development of rare earth analytics from 1940 to present
6(6)
2.2.1 Determination methods applied during the period from 1940 to 1960
7(1)
2.2.2 Separation methods applied during the period 1940-1960
8(1)
2.2.3 RE analysis during the period 1960-1980
9(3)
2.2.4 Literature review 1978
12(1)
2.2.5 Situation of RE analytics from 1980 to present
12(1)
References
12(2)
3 Separation/Preconcentration Techniques for Rare Earth Elements Analysis 14(60)
Bin Hu
Man He
Beibei Chen
Zucheng Jiang
3.1 Introduction
14(1)
3.2 Chemical separation techniques for REEs
15(1)
3.2.1 Precipitation/coprecipitation
15(1)
3.3 Liquid liquid extraction
16(17)
3.3.1 Affecting factors for LLE of REEs
16(2)
3.3.2 Extractants for REEs
18(8)
3.3.3 Extractant concentration and extraction equilibrium constant
26(1)
3.3.4 Medium pH
26(2)
3.3.5 Salting-out agent
28(1)
3.3.6 Extraction systems for REEs and their application
29(4)
3.4 Liquid phase microextraction
33(17)
3.4.1 Operation modes and mechanism
34(1)
3.4.2 Single-drop microextraction
35(2)
3.4.3 Hollow fiber liquid phase microextraction
37(1)
3.4.4 Two-phase HF-LPME
38(1)
3.4.5 Three-phase HF-LPME
38(2)
3.4.6 Dispersive liquid liquid microextraction
40(2)
3.4.7 Solidified floating organic drop microextraction
42(2)
3.4.8 Affecting factors in LPME
44(3)
3.4.9 Cloud point extraction
47(3)
3.5 Solid phase extraction
50(15)
3.5.1 Carbon nanotubes and graphene oxide
51(5)
3.5.2 Silica-based materials
56(1)
3.5.3 Chelating resin and ionic-exchange resin
57(1)
3.5.4 Metal oxide nanostructured materials
58(2)
3.5.5 Ion-imprinted materials
60(1)
3.5.6 Metal-organic frameworks (M0Fs)
60(1)
3.5.7 Restricted access materials
61(1)
3.5.8 Capillary microextraction
61(4)
References
65(9)
4 Chromatographic Techniques for Rare Earth Elements Analysis 74(50)
Beibei Chen
Man He
Huashan Zhang
Zucheng Jiang
Bin Hu
4.1 Introduction
74(1)
4.2 Liquid chromatography
75(32)
4.2.1 Ion-exchange chromatography
75(11)
4.2.2 Ion chromatography
86(4)
4.2.3 Reverse-phase ion pair chromatography (RPIPC)
90(7)
4.2.4 Extraction chromatography
97(5)
4.2.5 Thin layer chromatography (TLC) and Paper chromatography (PC)
102(5)
4.3 Gas chromatography
107(1)
4.4 Capillary Electrophoresis (CE)
108(7)
4.4.1 Basic knowledge and principle
108(2)
4.4.2 Influencing factors on CE separation
110(1)
4.4.3 Applications in REEs analysis
111(4)
4.5 Supercritical fluid chromatography
115(1)
References
116(8)
5 Analysis and Speciation of Lanthanoides by ICP-MS 124(21)
Lena Telgmann
Uwe Lindner
Jana Lingott
Norbert Jakubowski
5.1 Introduction
124(1)
5.2 Fundamentals of ICP-MS
125(9)
5.2.1 Sample preparation
126(1)
5.2.2 Sample introduction
126(1)
5.2.3 The ion source
127(1)
5.2.4 Interface
128(1)
5.2.5 Lens system
129(1)
5.2.6 Mass analyzers
129(5)
5.2.7 Detector and computer
134(1)
5.3 Analytical figures of merit
134(1)
5.4 Speciation of Gd-based contrast agents
135(4)
5.5 Analysis of Gd-based contrast agents in medical samples
139(1)
5.6 Analysis of Gd-based contrast agents in environmental samples
140(2)
5.7 Summary and outlook
142(1)
References
142(3)
6 Inductively Coupled Plasma Optical Emission Spectrometry for Rare Earth Elements Analysis 145(52)
Man He
Bin Hu
Beibei Chen
Zucheng Jiang
6.1 Introduction
145(21)
6.1.1 Spectral interference
148(7)
6.1.2 Matrix effect
155(3)
6.1.3 Acid effect
158(1)
6.1.4 Sensitivity-enhancing effect of organic solvent
159(7)
6.2 Sample introduction for ICP
166(11)
6.2.1 Pneumatic nebulization and ultrasonic nebulization
166(1)
6.2.2 Flow injection
166(4)
6.2.3 Laser ablation
170(3)
6.2.4 Electrothermal vaporization
173(4)
6.3 ETV-ICP-OES for REE analysis
177(10)
6.3.1 Fluorination-assisted (F)ETV-ICP-OES for REEs analysis
177(7)
6.3.2 Low-temperature ETV-ICP-OES for REEs analysis
184(3)
6.4 Application of ICP-OES in the analysis of high-purity REE, alloys and ores
187(6)
6.4.1 High-purity REE analysis by ICP-OES
187(4)
6.4.2 REE ores analysis by ICP-OES
191(1)
6.4.3 Trace REE analysis by ICP-OES in alloys
192(1)
References
193(4)
7 Application of Spark Atomic Emission Spectrometry for the Determination of Rare Earth Elements in Metals and Alloys 197(34)
Jorg Niederstraber
7.1 Introduction
197(1)
7.2 Spark emission spectrometry basics
197(3)
7.3 Setup of a spark emission spectrometer
200(4)
7.3.1 Argon supply
201(1)
7.3.2 Spark stand
201(1)
7.3.3 Spectrometer optical system
202(1)
7.3.4 Spark generator
203(1)
7.3.5 Power supply
203(1)
7.3.6 Operation and evaluation PC
204(1)
7.4 The analysis process
204(2)
7.5 Quantitative analysis
206(3)
7.5.1 Calibration and recalibration
206(2)
7.5.2 Evaluation of calibration and analysis results
208(1)
7.6 Using spark emission spectrometry
209(1)
7.7 Analysing rare earths using spark emission spectrometry
210(5)
7.7.1 Industrial use of rare earths
211(1)
7.7.2 Spectrometric prerequisites
212(1)
7.7.3 Calibration samples
212(3)
7.8 Analysis of aluminium alloys
215(3)
7.8.1 Calibration (analysis function) and accuracy
215(2)
7.8.2 Detection limits
217(1)
7.8.3 Repeatability
217(1)
7.9 Analysis of magnesium alloys
218(4)
7.9.1 Calibration (analysis function) and accuracy
218(2)
7.9.2 Detection limits
220(1)
7.9.3 Repeatability
220(2)
7.10 Analysis of iron alloys
222(4)
7.10.1 Calibration (analysis function) and accuracy
222(1)
7.10.2 Detection limits
223(1)
7.10.3 Repeatability
224(1)
7.10.4 Long-term stability
224(2)
7.11 Analysis of zinc alloys
226(2)
7.11.1 Calibration (analysis function) and accuracy
226(1)
7.11.2 Detection limits
226(2)
7.11.3 Repeatability
228(1)
7.12 Conclusion
228(1)
References
229(2)
8 Use of X-ray Fluorescence Analysis for the Determination of Rare Earth Elements 231(22)
Rainer Schramm
8.1 Introduction
231(1)
8.2 Principle of X-ray fluorescence analysis
231(2)
8.3 XRF methods
233(3)
8.3.1 Energy-dispersive X-ray fluorescence analysis
233(2)
8.3.2 Wavelength-dispersive X-ray analysis
235(1)
8.3.3 Comparison of EDXRF WDXRF
236(1)
8.3.4 Other XRF techniques
236(1)
8.4 Sample preparation
236(4)
8.4.1 Pressed pellets techniques
236(2)
8.4.2 Fusion technology
238(2)
8.4.3 Additional sample preparation techniques
240(1)
8.5 Practical application of REEs determination
240(9)
8.5.1 Reference materials
240(1)
8.5.2 Measuring parameters
241(4)
8.5.3 Analyte lines
245(4)
8.5.4 Lower limit of detection (LLD)
249(1)
8.6 Calibration
249(2)
8.6.1 Other calibration strategies mentioned in literature
251(1)
8.7 Summary
251(1)
References
251(2)
9 Neutron Activation Analysis of the Rare Earth Elements (REE) With Emphasis on Geological Materials 253(33)
Heinz-Gunter Stosch
9.1 Introduction
253(1)
9.2 Principles of neutron activation: activation equation, cross sections
253(5)
9.3 Equipment
258(8)
9.3.1 Neutron sources
258(3)
9.3.2 The counting system
261(5)
9.4 Practical considerations
266(17)
9.4.1 Instrumental versus radiochemical NAA
266(1)
9.4.2 Samples and standards
267(6)
9.4.3 Counting strategies
273(2)
9.4.4 Radiochemical neutron activation analysis (RNAA) a fast separation scheme
275(4)
9.4.5 Data reduction and sources of error
279(4)
9.5 Conclusion
283(1)
Acknowledgements
283(1)
References
284(2)
10 Automated Quantitative Rare Earth Elements Mineralogy by Scanning Electron Microscopy 286(15)
Sven Sindern
F. Michael Meyer
10.1 Introduction
286(2)
10.2 Quantitative mineralogy
288(1)
10.3 Scanning electron microscopy
289(1)
10.4 SEM-based automated quantitative mineralogy
290(5)
10.4.1 Quantitative Evaluation of Minerals by Scanning Electron Microscopy
291(3)
10.4.2 Mineral Liberation Analyser
294(1)
10.4.3 Tescan-Integrated Mineral Analyser
294(1)
10.4.4 ZEISS Mineralogic Mining
294(1)
10.5 Quantitative REE mineralogy
295(3)
10.6 Concluding remarks
298(1)
Acknowledgements
298(1)
References
299(2)
11 Novel Applications of Lanthanoides as Analytical or Diagnostic Tools in the Life Sciences by ICP-M5-based Techniques 301(20)
Larissa Willer
Heike Traub
Norbert Jakubowski
11.1 Introduction
301(1)
11.2 Bio-conjugation of biomolecules
302(2)
11.2.1 Fundamentals
302(1)
11.2.2 Bio-conjugation of antibodies
303(1)
11.3 Applications
304(12)
11.3.1 Development of identification and quantification strategies for DNA, peptides and proteins in mass spectrometry
304(1)
11.3.2 Analytical and diagnostic applications of lanthanoides
305(11)
11.4 Outlook
316(1)
References
317(4)
12 Lanthanoides in Glass and Glass Ceramics 321(13)
Jurgen Meinhardt
Martin Kilo
Ferdinand Somorowsky
Werner Hopp
12.1 Introduction
321(1)
12.2 Literature survey of rare earth chemical analysis in glass
322(1)
12.2.1 Laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS)
322(1)
12.2.2 Laser-ablation inductively coupled plasma atomic emission spectrometry (LA-ICP-AES)
323(1)
12.2.3 ICP-MS analysis of solutions
323(1)
12.2.4 X-ray fluorescence analysis (XRF)
323(1)
12.3 Analytical methods for the determination of main components of glass (except lanthanoides)
323(1)
12.4 Preparation of sample solutions for glass analysis by ICP-OES
324(1)
12.4.1 Hydrofluoric acid digestion
324(1)
12.4.2 Melt digestion
325(1)
12.5 ICP-OES analysis of rare earth elements
325(1)
12.6 Analysis of special optical glass
325(2)
12.7 Analysis of glass by topochemical analysis
327(4)
References
331(3)
13 Analysis of Rare Earth Elements in Rock and Mineral Samples by ICP-MS and LA-ICP-MS 334(23)
Sven Sindern
13.1 Introduction
334(4)
13.2 Technical development
338(2)
13.3 Physical and chemical effects on concentration and isotope ratio determination
340(3)
13.4 Determination of REE concentrations
343(2)
13.4.1 Sample preparation
343(1)
13.4.2 Quantification
343(2)
13.5 Determination of isotope ratios by multi-collector (MC)-ICP-MS
345(4)
13.5.1 Solution-MC-ICP-MS
346(1)
13.5.2 LA-MC-ICP-MS
347(2)
13.6 Concluding remarks
349(1)
Acknowledgements
349(1)
References
349(8)
14 Recycling of Rare Earth Elements 357(38)
Tom Lorenz
Martin Bertau
14.1 Recycling of rare earth elements
357(1)
14.2 Recycling from fluorescent lamp scraps
358(20)
14.2.1 Starting material
359(2)
14.2.2 Solid-state chlorination
361(4)
14.2.3 Optimization of the solid-state chlorination
365(10)
14.2.4 Recycling process
375(1)
14.2.5 Summary
376(2)
14.3 RE metal recycling from Fe14Nd2B magnets
378(13)
14.3.1 Starting material
379(1)
14.3.2 Preliminary tests
380(2)
14.3.3 Optimization of the solid-state chlorination
382(7)
14.3.4 Recycling process
389(2)
14.3.5 Summary
391(1)
References
391(4)
Index 395
Alfred Golloch, Aachen, Germany.