Atjaunināt sīkdatņu piekrišanu

E-grāmata: Handbook of Uncertainty Quantification

Edited by , Edited by , Edited by
  • Formāts: PDF+DRM
  • Izdošanas datums: 16-Jun-2017
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783319123851
  • Formāts - PDF+DRM
  • Cena: 1 308,64 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Izdošanas datums: 16-Jun-2017
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783319123851

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

The topic of Uncertainty Quantification (UQ) has witnessed massive developments in response to the promise of achieving risk mitigation through scientific prediction. It has led to the integration of ideas from mathematics, statistics and engineering being used to lend credence to predictive assessments of risk but also to design actions (by engineers, scientists and investors) that are consistent with risk aversion. The objective of this Handbook is to facilitate the dissemination of the forefront of UQ ideas to their audiences. We recognize that these audiences are varied, with interests ranging from theory to application, and from research to development and even execution.

Preliminaries.- methodology.-sensitivity analysis.- forward problems.- risk.- codes of practise and factors of safety.- software.

Recenzijas

Volume 1
Preface
v
About the Editors
xiii
Contributors
xix
Part I Introduction to Uncertainty Quantification
1(6)
1 Introduction to Uncertainty Quantification
3(4)
Roger Ghanem
David Higdon
Houman Owhadi
Part II Methodology
7(546)
2 Bayes Linear Emulation, History Matching and Forecasting for Complex Computer Simulators
9(24)
Michael Goldstein
Nathan Huntley
3 Inference Given Summary Statistics
33(36)
Habib N. Najm
Kenny Chowdhary
4 Multi-response Approach to Improving Identifiability in Model Calibration
69(60)
Zhen Jiang
Paul D. Arendt
Daniel W. Apley
Wei Chen
5 Validation of Physical Models in the Presence of Uncertainty
129(28)
Robert D. Moser
Todd A. Oliver
6 Toward Machine Wald
157(36)
Houman Owhadi
Clint Scovel
7 Hierarchical Models for Uncertainty Quantification: An Overview
193(26)
Christopher K. Wikle
8 Random Matrix Models and Nonparametric Method for Uncertainty Quantification
219(70)
Christian Soize
9 Maximin Sliced Latin Hypercube Designs with Application to Cross Validating Prediction Error
289(22)
Yan Chen
David M. Steinberg
Peter Qian
10 The Bayesian Approach to Inverse Problems
311(118)
Masoumeh Dashti
Andrew M. Stuart
11 Multilevel Uncertainty Integration
429(48)
Sankaran Mahadevan
Shankar Sankararaman
Chenzhao Li
12 Bayesian Cubic Spline in Computer Experiments
477(20)
Yijie Dylan Wang
C.F. Jeff Wu
13 Propagation of Stochasticity in Heterogeneous Media and Applications to Uncertainty Quantification
497(24)
Guillaume Bal
14 Polynomial Chaos: Modeling, Estimation and Approximation
521(32)
Roger Ghanem
John Red-Horse
Volume 2
Part III Forward Problems
553(548)
15 Bayesian Uncertainty Propagation Using Gaussian Processes
555(46)
Ilias Bilionis
Nicholas Zabaras
16 Solution Algorithms for Stochastic Galerkin Discretizations of Differential Equations with Random Data
601(16)
Howard Elman
17 Intrusive Polynomial Chaos Methods for Forward Uncertainty Propagation
617(20)
Bert Debusschere
18 Multiresolution Analysis for Uncertainty Quantification
637(36)
Olivier P. Le Maitre
Omar M. Knio
19 Surrogate Models for Uncertainty Propagation and Sensitivity Analysis
673(26)
Khachik Sargsyan
20 Stochastic Collocation Methods: A Survey
699(18)
Dongbin Xiu
21 Sparse Collocation Methods for Stochastic Interpolation and Quadrature
717(46)
Max Gunzburger
Clayton G. Webster
Guannan Zhang
22 Method of Distributions for Uncertainty Quantification
763(22)
Daniel M. Tartakovsky
Pierre A. Gremaud
23 Sampling via Measure Transport: An Introduction
785(42)
Youssef Marzouk
Tarek Moselhy
Matthew Parno
Alessio Spantini
24 Compressive Sampling Methods for Sparse Polynomial Chaos Expansions
827(30)
Jerrad Hampton
Alireza Doostan
25 Low-Rank Tensor Methods for Model Order Reduction
857(26)
Anthony Nouy
26 Random Vectors and Random Fields in High Dimension: Parametric Model-Based Representation, Identification from Data and Inverse Problems
883(54)
Christian Soize
27 Model Order Reduction Methods in Computational Uncertainty Quantification
937(54)
Peng Chen
Christoph Schwab
28 Multifidelity Uncertainty Quantification Using Spectral Stochastic Discrepancy Models
991(46)
Michael S. Eldred
Leo W.T. Ng
Matthew F. Barone
Stefan P. Domino
29 Mori-Zwanzig Approach to Uncertainty Quantification
1037(38)
Daniele Venturi
Heyrim Cho
George Em Karniadakis
30 Rare-Event Simulation
1075(26)
Part IV Introduction to Sensitivity Analysis
1101(258)
31 Introduction to Sensitivity Analysis
1103(20)
Bertrand Iooss
Andrea Saltelli
32 Variational Methods
1123(20)
Maelle Nodet
Arthur Vidard
33 Design of Experiments for Screening
1143(44)
David C. Woods
Susan M. Lewis
34 Weights and Importance in Composite Indicators: Mind the Gap
1187(30)
William Becker
Paolo Paruolo
Michaela Saisana
Andrea Saltelli
35 Variance-Based Sensitivity Analysis: Theory and Estimation Algorithms
1217(24)
Clementine Prieur
Stefano Tarantola
36 Derivative-Based Global Sensitivity Measures
1241(24)
Sergey Kucherenko
Bertrand Iooss
37 Moment-Independent and Reliability-Based Importance Measures
1265(24)
Emanuele Borgonovo
Bertrand Iooss
38 Metamodel-Based Sensitivity Analysis: Polynomial Chaos Expansions and Gaussian Processes
1289(38)
Loic Le Gratiet
Stefano Marelli
Bruno Sudret
39 Sensitivity Analysis of Spatial and/or Temporal Phenomena
1327(32)
Amandine Marrel
Nathalie Saint-Geours
Matthias De Lozzo
Volume 3
Part V Risk
1359(142)
40 Decision Analytic and Bayesian Uncertainty Quantification for Decision Support
1361(40)
D. Warner North
41 Validation, Verification and Uncertainty Quantification for Models with Intelligent Adversaries
1401(20)
Jing Zhang
Jun Zhuang
42 Robust Design and Uncertainty Quantification for Managing Risks in Engineering
1421(16)
Ron Bates
43 Quantifying and Reducing Uncertainty About Causality in Improving Public Health and Safety
1437(64)
Louis Anthony Cox Jr
Part VI Codes of Practice and Factors of Safety
1501(148)
44 Conceptual Structure of Performance Assessments for Geologic Disposal of Radioactive Waste
1503(38)
Jon C. Helton
Clifford W. Hansen
Cedric J. Salaberry
45 Redundancy of Structures and Fatigue of Bridges and Ships Under Uncertainty
1541(26)
Dan M. Frangopol
Benjin Zhu
Mohamed Soliman
46 Uncertainty Approaches in Ship Structural Performance
1567(22)
Matthew Collette
47 Uncertainty Quantification's Role in Modeling and Simulation Planning and Credibility Assessment Through the Predictive Capability Maturity Model
1589(24)
W.J. Rider
W.R. Witkowski
Vincent A. Mousseau
48 Uncertainty Quantification in a Regulatory Environment
1613(36)
Vincent A. Mousseau
Brian J. Williams
Part VII Introduction to Software for Uncertainty Quantification
1649(390)
49 Dakota: Bridging Advanced Scalable Uncertainty Quantification Algorithms with Production Deployment
1651(44)
Laura P. Swiler
Michael S. Eldred
Brian M. Adams
50 Problem Solving Environment for Uncertainty Analysis and Design Exploration
1695(38)
Charles Tong
51 Probabilistic Analysis Using NESSUS (Numerical Evaluation of Stochastic Structures Under Stress)
1733(32)
John M. McFarland
David S. Riha
52 Embedded Uncertainty Quantification Methods via Stokhos
1765(42)
Eric T. Phipps
Andrew G. Salinger
53 Uncertainty Quantification Toolkit (UQTk)
1807(22)
Bert Debusschere
Khachik Sargsyan
Cosmin Safta
Kenny Chowdhary
54 The Parallel C++ Statistical Library for Bayesian Inference: QUESO
1829(38)
Damon McDougall
Nicholas Malaya
Robert D. Moser
55 Gaussian Process-Based Sensitivity Analysis and Bayesian Model Calibration with GPMSA
1867(42)
James Gattiker
Kary Myers
Brian J. Williams
Dave Higdon
Marcos Carzolio
Andrew Hoegh
56 COSSAN: A Multidisciplinary Software Suite for Uncertainty Quantification and Risk Management
1909(70)
Edoardo Patelli
57 SIMLAB Software for Uncertainty and Sensitivity Analysis
1979(22)
Stefano Tarantola
William Becker
58 OpenTURNS: An Industrial Software for Uncertainty Quantification in Simulation
2001(38)
Michael Baudin
Anne Dutfoy
Bertrand Iooss
Anne-Laure Popelin
Index 2039
Roger Ghanem is the Gordon S. Marshall Professor of Engineering at the University of Southern California where he holds joint appointments in the Departments of Civil & Environmental Engineering and Mechanical & Aerospace Engineering.

David Higdon is Scientists and Group Leader in Statistical Sciences at Los Alamos National Laboratories. He has developed statistical concepts and methodologies that are uniquely adapted to modeling and simulation and computationally intensive numerical models

Houman Owhadi is a Professor of Applied & Computational Mathematics and Control & Dynamical Systems at the California Institute of Technology.