Atjaunināt sīkdatņu piekrišanu

E-grāmata: Handbook of Univariate and Multivariate Data Analysis with IBM SPSS

(Assumption University of Thailand, Bangkok)
  • Formāts: 600 pages
  • Izdošanas datums: 25-Oct-2013
  • Izdevniecība: CRC Press Inc
  • Valoda: eng
  • ISBN-13: 9781439890226
  • Formāts - PDF+DRM
  • Cena: 55,09 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 600 pages
  • Izdošanas datums: 25-Oct-2013
  • Izdevniecība: CRC Press Inc
  • Valoda: eng
  • ISBN-13: 9781439890226

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Using the same accessible, hands-on approach as its best-selling predecessor, the Handbook of Univariate and Multivariate Data Analysis with IBM SPSS, Second Edition explains how to apply statistical tests to experimental findings, identify the assumptions underlying the tests, and interpret the findings. This second edition now covers more topics and has been updated with the SPSS statistical package for Windows.

New to the Second Edition











Three new chapters on multiple discriminant analysis, logistic regression, and canonical correlation New section on how to deal with missing data Coverage of tests of assumptions, such as linearity, outliers, normality, homogeneity of variance-covariance matrices, and multicollinearity Discussions of the calculation of Type I error and the procedure for testing statistical significance between two correlation coefficients obtained from two samples Expanded coverage of factor analysis, path analysis (test of the mediation hypothesis), and structural equation modeling

Suitable for both newcomers and seasoned researchers in the social sciences, the handbook offers a clear guide to selecting the right statistical test, executing a wide range of univariate and multivariate statistical tests via the Windows and syntax methods, and interpreting the output results. The SPSS syntax files used for executing the statistical tests can be found in the appendix. Data sets employed in the examples are available on the books CRC Press web page.

Recenzijas

"Using IBM SPSS as the main statistical tool, Ho tries to alleviate the frustration of social sciences students when confronted with data analysis and is more than successful. In addition, this book can be very useful for applied researchers in other disciplines who intend to deal with data. Very efficiently, the author explains how to select and execute appropriate tests, together with interpretation of the relevant SPSS output. I strongly recommend [ the book] to both students and researchers who already deal or will deal with data." Journal of Applied Statistics, 2015

Praise for the First Edition:"The click-by-click instructions would clearly be useful for beginners to SPSS The examples and methods all have a strong social science flavor, which is consistent with the aims of the book. This book would therefore seem to be most appropriate for statisticians or practitioners in the social sciences the book can [ also] help more experienced SPSS users who want to learn to write syntax files. " Biometrics, December 2006

" main strengths are the choice of easy-to-use software to apply statistical methods and the clarity of explanations. Learning to analyse data with SPSS with this handbook is very easy even for those who are rusty . I found no typological errors authors aims have been achieved. This is the best book I have found for demonstrating statistical methods with SPSS. I recommend it highly for all" Venkata Putcha, Kings College, London, UK

"The main strengths of the book are: (a) its hands-on approach, (b) the choice of a user-friendly software to teach how to apply statistical methods, and (c) the clarity with which the statistical methods and the context of their applicability are explained. Learning to analyze data with SPSS with this handbook is very easy even for those rusty in their introductory statistical background. The reader that completes the book is ready to use the SPSS manuals available elsewhere. The index is very useful. The authors do indeed provide clear guidelines to both the execution of the specific statistical tests with SPSS and the research designs for which they are relevant." Juana Sanchez, University of California, Los Angeles, Journal of Statistical Software, Vol. 16, July 2006

"This hardback covers most statistical methods provided by SPSS Base software in an easily understood manner, due in part to its liberal use of SPSS output and screenshots. The inclusion of SPSS syntax is a strong selling point, as well as the focus on interpretation of SPSS output. It is an excellent choice for graduate students and researchers outside the statistics community who use SPSS " J. Wade Davis, University of Missouri, The American Statistician, August 2008

Inferential Statistics and Test Selection. Introduction to SPSS.
Multiple Response. t Test for Independent Groups. Paired-Samples t Test.
One-Way Analysis of Variance, with Post Hoc Comparisons. Factorial Analysis
of Variance. General Linear Model (GLM) Multivariate Analysis. General Linear
Model: Repeated Measures Analysis. Correlation. Linear Regression. Factor
Analysis. Reliability. Multiple Regression. Multiple Discriminant Analysis.
Logistic Regression. Canonical Correlation Analysis. Structural Equation
Modeling. Nonparametric Tests. Appendix. Bibliography. Index.