Preface |
|
xvii | |
Contributors |
|
xix | |
|
|
1 | (48) |
|
|
1 | (1) |
|
|
1 | (24) |
|
|
1 | (2) |
|
1.2.1.1 Structure of GARCH Models |
|
|
3 | (2) |
|
1.2.1.2 Early GARCH Models |
|
|
5 | (2) |
|
1.2.1.3 Probability Distributions for zt |
|
|
7 | (2) |
|
|
9 | (6) |
|
1.2.1.5 Explanation of Volatility Clustering |
|
|
15 | (1) |
|
1.2.1.6 Literature and Software |
|
|
16 | (1) |
|
1.2.1.7 Applications of Univariate GARCH |
|
|
16 | (2) |
|
|
18 | (1) |
|
1.2.2.1 Structure of MGARCH Models |
|
|
19 | (1) |
|
1.2.2.2 Conditional Correlations |
|
|
19 | (4) |
|
|
23 | (2) |
|
1.3 Stochastic Volatility |
|
|
25 | (8) |
|
|
26 | (1) |
|
|
27 | (1) |
|
1.3.3 Multivariate SV Models |
|
|
28 | (2) |
|
|
30 | (1) |
|
1.3.5 Empirical Example: S&P 500 |
|
|
31 | (1) |
|
|
32 | (1) |
|
|
33 | (16) |
|
|
33 | (7) |
|
1.4.1.1 Empirical Application |
|
|
40 | (4) |
|
1.4.2 Realized Covariance |
|
|
44 | (1) |
|
1.4.2.1 Realized Quadratic Covariation |
|
|
44 | (1) |
|
1.4.2.2 Realized Bipower Covariation |
|
|
44 | (1) |
|
|
45 | (4) |
|
PART ONE Autoregressive Conditional Heteroskedasticity and Stochastic Volatility |
|
|
|
2 Nonlinear Models for Autoregressive Conditional Heteroskedasticity |
|
|
49 | (22) |
|
|
49 | (1) |
|
2.2 The Standard GARCH Model |
|
|
50 | (1) |
|
2.3 Predecessors to Nonlinear GARCH Models |
|
|
51 | (1) |
|
2.4 Nonlinear ARCH and GARCH Models |
|
|
52 | (8) |
|
2.4.1 Engle's Nonlinear GARCH Model |
|
|
52 | (1) |
|
2.4.2 Nonlinear ARCH Model |
|
|
53 | (1) |
|
2.4.3 Asymmetric Power GARCH Model |
|
|
53 | (1) |
|
2.4.4 Smooth Transition GARCH Model |
|
|
54 | (2) |
|
2.4.5 Double Threshold ARCH Model |
|
|
56 | (1) |
|
2.4.6 Neural Network ARCH and GARCH Models |
|
|
57 | (1) |
|
|
58 | (1) |
|
2.4.8 Families of GARCH Models and their Probabilistic Properties |
|
|
59 | (1) |
|
2.5 Testing Standard GARCH Against Nonlinear GARCH |
|
|
60 | (3) |
|
2.5.1 Size and Sign Bias Tests |
|
|
60 | (1) |
|
2.5.2 Testing GARCH Against Smooth Transition GARCH |
|
|
61 | (1) |
|
2.5.3 Testing GARCH Against Artificial Neural Network GARCH |
|
|
62 | (1) |
|
2.6 Estimation of Parameters in Nonlinear GARCH Models |
|
|
63 | (1) |
|
2.6.1 Smooth Transition GARCH |
|
|
63 | (1) |
|
2.6.2 Neural Network GARCH |
|
|
64 | (1) |
|
2.7 Forecasting with Nonlinear GARCH Models |
|
|
64 | (3) |
|
2.7.1 Smooth Transition GARCH |
|
|
64 | (2) |
|
2.7.2 Asymmetric Power GARCH |
|
|
66 | (1) |
|
2.8 Models Based on Multiplicative Decomposition of the Variance |
|
|
67 | (1) |
|
|
68 | (3) |
|
|
69 | (2) |
|
3 Mixture and Regime-Switching GARCH Models |
|
|
71 | (32) |
|
|
71 | (2) |
|
3.2 Regime-Switching GARCH Models for Asset Returns |
|
|
73 | (8) |
|
3.2.1 The Regime-Switching Framework |
|
|
73 | (2) |
|
3.2.2 Modeling the Mixing Weights |
|
|
75 | (3) |
|
3.2.3 Regime-Switching GARCH Specifications |
|
|
78 | (3) |
|
3.3 Stationarity and Moment Structure |
|
|
81 | (8) |
|
|
83 | (4) |
|
|
87 | (2) |
|
3.4 Regime Inference, Likelihood Function, and Volatility Forecasting |
|
|
89 | (8) |
|
3.4.1 Determining the Number of Regimes |
|
|
92 | (1) |
|
3.4.2 Volatility Forecasts |
|
|
92 | (1) |
|
3.4.3 Application of MS-GARCH Models to Stock Return Indices |
|
|
93 | (4) |
|
3.5 Application of Mixture GARCH Models to Density Prediction and Value-at-Risk Estimation |
|
|
97 | (5) |
|
|
97 | (1) |
|
|
98 | (1) |
|
|
99 | (3) |
|
|
102 | (1) |
|
|
102 | (1) |
|
4 Forecasting High Dimensional Covariance Matrices |
|
|
103 | (24) |
|
|
103 | (1) |
|
|
104 | (1) |
|
4.3 Rolling Window Forecasts |
|
|
104 | (5) |
|
|
105 | (1) |
|
4.3.2 Observable Factor Covariance |
|
|
105 | (1) |
|
4.3.3 Statistical Factor Covariance |
|
|
106 | (1) |
|
|
107 | (1) |
|
4.3.5 Shrinkage Estimators |
|
|
108 | (1) |
|
|
109 | (8) |
|
4.4.1 Covariance Targeting Scalar VEC |
|
|
109 | (1) |
|
4.4.2 Flexible Multivariate GARCH |
|
|
110 | (1) |
|
4.4.3 Conditional Correlation GARCH Models |
|
|
111 | (2) |
|
|
113 | (1) |
|
|
114 | (2) |
|
4.4.6 Alternative Estimators for Multivariate GARCH Models |
|
|
116 | (1) |
|
4.5 High Frequency Based Forecasts |
|
|
117 | (6) |
|
4.5.1 Realized Covariance |
|
|
118 | (1) |
|
4.5.2 Mixed-Frequency Factor Model Covariance |
|
|
119 | (1) |
|
4.5.3 Regularization and Blocking Covariance |
|
|
119 | (4) |
|
|
123 | (2) |
|
4.6.1 Portfolio Constraints |
|
|
124 | (1) |
|
|
125 | (2) |
|
|
125 | (2) |
|
5 Mean, Volatility, and Skewness Spillovers in Equity Markets |
|
|
127 | (20) |
|
|
127 | (2) |
|
5.2 Data and Summary Statistics |
|
|
129 | (9) |
|
|
129 | (3) |
|
5.2.2 Time-Varying Skewness (Univariate Analysis) |
|
|
132 | (3) |
|
|
135 | (3) |
|
|
138 | (6) |
|
5.3.1 Parameter Estimates |
|
|
138 | (1) |
|
5.3.2 Spillover Effects in Variance and Skewness |
|
|
139 | (1) |
|
|
139 | (2) |
|
5.3.2.2 Pattern and Size of Skewness Spillovers |
|
|
141 | (3) |
|
|
144 | (3) |
|
|
145 | (2) |
|
6 Relating Stochastic Volatility Estimation Methods |
|
|
147 | (28) |
|
|
147 | (2) |
|
6.2 Theory and Methodology |
|
|
149 | (11) |
|
6.2.1 Quasi-Maximum Likelihood Estimation |
|
|
150 | (1) |
|
6.2.2 Gaussian Mixture Sampling |
|
|
151 | (1) |
|
6.2.3 Simulated Method of Moments |
|
|
152 | (1) |
|
6.2.4 Methods Based on Importance Sampling |
|
|
153 | (1) |
|
6.2.4.1 Approximating in the Basic IS Approach |
|
|
154 | (1) |
|
6.2.4.2 Improving on IS with IIS |
|
|
155 | (1) |
|
6.2.4.3 Alternative Efficiency Gains with EIS |
|
|
156 | (2) |
|
6.2.5 Alternative Sampling Methods: SSS and MMS |
|
|
158 | (2) |
|
6.3 Comparison of Methods |
|
|
160 | (5) |
|
6.3.1 Setup of Data-Generating Process and Estimation Procedures |
|
|
160 | (1) |
|
6.3.2 Parameter Estimates for the Simulation |
|
|
161 | (2) |
|
|
163 | (1) |
|
6.3.4 Precision of Bayesian Methods |
|
|
164 | (1) |
|
6.4 Estimating Volatility Models in Practice |
|
|
165 | (7) |
|
6.4.1 Describing Return Data of Goldman Sachs and IBM Stock |
|
|
165 | (2) |
|
6.4.2 Estimating SV Models |
|
|
167 | (1) |
|
6.4.3 Extracting Underlying Volatility |
|
|
168 | (1) |
|
6.4.4 Relating the Returns in a Bivariate Model |
|
|
169 | (3) |
|
|
172 | (3) |
|
7 Multivariate Stochastic Volatility Models |
|
|
175 | (24) |
|
|
175 | (1) |
|
|
176 | (7) |
|
|
176 | (1) |
|
7.2.1.1 Likelihood Function |
|
|
177 | (1) |
|
7.2.1.2 Prior Distribution |
|
|
178 | (1) |
|
7.2.1.3 Posterior Distribution |
|
|
179 | (1) |
|
7.2.2 Bayesian Estimation |
|
|
179 | (1) |
|
|
179 | (2) |
|
|
181 | (1) |
|
|
181 | (1) |
|
7.2.3 Multivariate-t Errors |
|
|
181 | (1) |
|
|
182 | (1) |
|
|
183 | (1) |
|
|
183 | (5) |
|
|
183 | (1) |
|
7.3.1.1 Likelihood Function |
|
|
184 | (1) |
|
7.3.1.2 Prior and Posterior Distributions |
|
|
185 | (1) |
|
7.3.2 Bayesian Estimation |
|
|
185 | (1) |
|
7.3.2.1 Generation of α, θ, and Σ |
|
|
186 | (1) |
|
|
187 | (1) |
|
|
187 | (1) |
|
|
188 | (1) |
|
|
188 | (1) |
|
7.4 Applications to Stock Indices Returns |
|
|
188 | (7) |
|
7.4.1 S&P 500 Sector Indices |
|
|
188 | (1) |
|
7.4.2 MSV Model with Multivariate t Errors |
|
|
189 | (1) |
|
7.4.2.1 Prior Distributions |
|
|
189 | (1) |
|
7.4.2.2 Estimation Results |
|
|
189 | (3) |
|
|
192 | (1) |
|
7.4.3.1 Prior Distributions |
|
|
192 | (1) |
|
7.4.3.2 Estimation Results |
|
|
192 | (3) |
|
|
195 | (1) |
|
7.6 Appendix: Sampling α in the MSV Model |
|
|
195 | (4) |
|
7.6.1 Single-Move Sampler |
|
|
195 | (1) |
|
|
196 | (3) |
|
8 Model Selection and Testing of Conditional and Stochastic Volatility Models |
|
|
199 | (26) |
|
|
199 | (3) |
|
8.1.1 Model Specifications |
|
|
200 | (2) |
|
8.2 Model Selection and Testing |
|
|
202 | (9) |
|
8.2.1 In-Sample Comparisons |
|
|
202 | (4) |
|
8.2.2 Out-of-Sample Comparisons |
|
|
206 | (1) |
|
8.2.2.1 Direct Model Evaluation |
|
|
206 | (3) |
|
8.2.2.2 Indirect Model Evaluation |
|
|
209 | (2) |
|
|
211 | (10) |
|
|
221 | (4) |
|
PART TWO Other Models and Methods |
|
|
|
9 Multiplicative Error Models |
|
|
225 | (24) |
|
|
225 | (1) |
|
9.2 Theory and Methodology |
|
|
226 | (9) |
|
|
226 | (1) |
|
9.2.1.1 Specifications for μt |
|
|
227 | (3) |
|
9.2.1.2 Specifications for εt |
|
|
230 | (1) |
|
|
230 | (1) |
|
9.2.2.1 Maximum Likelihood Inference |
|
|
230 | (3) |
|
9.2.2.2 Generalized Method of Moments Inference |
|
|
233 | (2) |
|
9.3 MEMs for Realized Volatility |
|
|
235 | (7) |
|
|
242 | (5) |
|
9.4.1 Component Multiplicative Error Model |
|
|
242 | (1) |
|
9.4.2 Vector Multiplicative Error Model |
|
|
243 | (4) |
|
|
247 | (2) |
|
10 Locally Stationary Volatility Modeling |
|
|
249 | (20) |
|
|
249 | (2) |
|
|
251 | (5) |
|
10.2.1 Structural Breaks, Nonstationarity, and Persistence |
|
|
251 | (2) |
|
10.2.2 Testing Stationarity |
|
|
253 | (3) |
|
10.3 Locally Stationary Processes and their Time-Varying Autocovariance Function |
|
|
256 | (4) |
|
10.4 Locally Stationary Volatility Models |
|
|
260 | (6) |
|
10.4.1 Multiplicative Models |
|
|
260 | (1) |
|
10.4.2 Time-Varying ARCH Processes |
|
|
261 | (3) |
|
10.4.3 Adaptive Approaches |
|
|
264 | (2) |
|
10.5 Multivariate Models for Locally Stationary Volatility |
|
|
266 | (1) |
|
10.5.1 Multiplicative Models |
|
|
266 | (1) |
|
10.5.2 Adaptive Approaches |
|
|
267 | (1) |
|
|
267 | (2) |
|
|
268 | (1) |
|
11 Nonparametric and Semiparametric Volatility Models: Specification, Estimation, and Testing |
|
|
269 | (24) |
|
|
269 | (2) |
|
11.2 Nonparametric and Semiparametric Univariate Volatility Models |
|
|
271 | (13) |
|
11.2.1 Stationary Volatility Models |
|
|
271 | (1) |
|
11.2.1.1 The Simplest Nonparametric Volatility Model |
|
|
271 | (2) |
|
11.2.1.2 Additive Nonparametric Volatility Model |
|
|
273 | (3) |
|
11.2.1.3 Functional-Coefficient Volatility Model |
|
|
276 | (1) |
|
11.2.1.4 Single-Index Volatility Model |
|
|
277 | (1) |
|
11.2.1.5 Stationary Semiparametric ARCH (∞) Models |
|
|
278 | (1) |
|
11.2.1.6 Semiparametric Combined Estimator of Volatility |
|
|
279 | (1) |
|
11.2.1.7 Semiparametric Inference in GARCH-in-Mean Models |
|
|
280 | (1) |
|
11.2.2 Nonstationary Univariate Volatility Models |
|
|
281 | (1) |
|
11.2.3 Specification of the Error Density |
|
|
282 | (1) |
|
11.2.4 Nonparametric Volatility Density Estimation |
|
|
283 | (1) |
|
11.3 Nonparametric and Semiparametric Multivariate Volatility Models |
|
|
284 | (4) |
|
11.3.1 Modeling the Conditional Covariance Matrix under Stationarity |
|
|
285 | (1) |
|
11.3.1.1 Hafner, van Dijk, and Franses' Semiparametric Estimator |
|
|
285 | (1) |
|
11.3.1.2 Long, Su, and Ullah's Semiparametric Estimator |
|
|
286 | (1) |
|
11.3.1.3 Test for the Correct Specification of Parametric Conditional Covariance Models |
|
|
286 | (1) |
|
11.3.2 Specification of the Error Density |
|
|
287 | (1) |
|
|
288 | (3) |
|
|
291 | (2) |
|
|
291 | (2) |
|
12 Copula-Based Volatility Models |
|
|
293 | (26) |
|
|
293 | (1) |
|
12.2 Definition and Properties of Copulas |
|
|
294 | (6) |
|
|
295 | (1) |
|
12.2.2 Conditional Copula |
|
|
296 | (1) |
|
12.2.3 Some Commonly Used Bivariate Copulas |
|
|
296 | (2) |
|
12.2.4 Copula-Based Dependence Measures |
|
|
298 | (2) |
|
|
300 | (4) |
|
12.3.1 Exact Maximum Likelihood |
|
|
300 | (1) |
|
|
301 | (1) |
|
12.3.3 Bivariate Static Copula Models |
|
|
301 | (3) |
|
|
304 | (4) |
|
|
305 | (1) |
|
12.4.2 Dynamics Based on the DCC Model |
|
|
305 | (2) |
|
12.4.3 Alternative Methods |
|
|
307 | (1) |
|
|
308 | (2) |
|
12.6 Multivariate Static Copulas |
|
|
310 | (5) |
|
12.6.1 Multivariate Archimedean Copulas |
|
|
310 | (3) |
|
|
313 | (2) |
|
|
315 | (4) |
|
PART THREE Realized Volatility |
|
|
|
13 Realized Volatility: Theory and Applications |
|
|
319 | (28) |
|
|
319 | (1) |
|
|
320 | (3) |
|
|
320 | (2) |
|
|
322 | (1) |
|
13.3 Issues in Handling Intraday Transaction Databases |
|
|
323 | (6) |
|
13.3.1 Which Price to Use? |
|
|
324 | (2) |
|
13.3.2 High Frequency Data Preprocessing |
|
|
326 | (1) |
|
13.3.3 How to and How Often to Sample? |
|
|
326 | (3) |
|
13.4 Realized Variance and Covariance |
|
|
329 | (8) |
|
13.4.1 Univariate Volatility Estimators |
|
|
329 | (1) |
|
13.4.1.1 Measurement Error |
|
|
330 | (3) |
|
13.4.2 Multivariate Volatility Estimators |
|
|
333 | (3) |
|
13.4.2.1 Measurement Error |
|
|
336 | (1) |
|
13.5 Modeling and Forecasting |
|
|
337 | (3) |
|
13.5.1 Time Series Models of (co) Volatility |
|
|
337 | (2) |
|
13.5.2 Forecast Comparison |
|
|
339 | (1) |
|
|
340 | (4) |
|
13.6.1 Distribution of Returns Conditional on the Volatility Measure |
|
|
340 | (1) |
|
13.6.2 Application to Factor Pricing Model |
|
|
341 | (1) |
|
13.6.3 Effects of Algorithmic Trading |
|
|
342 | (1) |
|
13.6.4 Application to Option Pricing |
|
|
342 | (2) |
|
13.7 Estimating Continuous Time Models |
|
|
344 | (3) |
|
14 Likelihood-Based Volatility Estimators in the Presence of Market Microstructure Noise |
|
|
347 | (16) |
|
|
347 | (2) |
|
14.2 Volatility Estimation |
|
|
349 | (7) |
|
14.2.1 Constant Volatility and Gaussian Noise Case: MLE |
|
|
349 | (2) |
|
14.2.2 Robustness to Non-Gaussian Noise |
|
|
351 | (1) |
|
14.2.3 Implementing Maximum Likelihood |
|
|
351 | (1) |
|
14.2.4 Robustness to Stochastic Volatility: QMLE |
|
|
352 | (3) |
|
14.2.5 Comparison with Other Estimators |
|
|
355 | (1) |
|
14.2.6 Random Sampling and Non-i.i.d. Noise |
|
|
356 | (1) |
|
14.3 Covariance Estimation |
|
|
356 | (3) |
|
14.4 Empirical Application: Correlation between Stock and Commodity Futures |
|
|
359 | (1) |
|
|
360 | (3) |
|
|
361 | (2) |
|
15 HAR Modeling for Realized Volatility Forecasting |
|
|
363 | (20) |
|
|
363 | (2) |
|
15.2 Stylized Facts on Realized Volatility |
|
|
365 | (1) |
|
15.3 Heterogeneity and Volatility Persistence |
|
|
366 | (4) |
|
15.3.1 Genuine Long Memory or Superposition of Factors? |
|
|
369 | (1) |
|
|
370 | (5) |
|
15.4.1 Jump Measures and Their Volatility Impact |
|
|
370 | (2) |
|
|
372 | (1) |
|
15.4.3 General Nonlinear Effects in Volatility |
|
|
373 | (2) |
|
|
375 | (3) |
|
|
378 | (3) |
|
|
381 | (2) |
|
16 Forecasting Volatility with MIDAS |
|
|
383 | (20) |
|
|
383 | (1) |
|
16.2 MIDAS Regression Models and Volatility Forecasting |
|
|
384 | (7) |
|
|
384 | (2) |
|
16.2.2 Direct Versus Iterated Volatility Forecasting |
|
|
386 | (3) |
|
16.2.3 Variations on the Theme of MIDAS Regressions |
|
|
389 | (1) |
|
16.2.4 Microstructure Noise and MIDAS Regressions |
|
|
390 | (1) |
|
16.3 Likelihood-Based Methods |
|
|
391 | (8) |
|
16.3.1 Risk-Return Trade-Off |
|
|
391 | (2) |
|
16.3.2 HYBRID GARCH Models |
|
|
393 | (5) |
|
16.3.3 GARCH-MIDAS Models |
|
|
398 | (1) |
|
|
399 | (2) |
|
|
401 | (2) |
|
|
403 | (44) |
|
|
403 | (8) |
|
17.1.1 Some Models Used in Finance and Our Framework |
|
|
403 | (4) |
|
17.1.2 Simulated Models Used in This Chapter |
|
|
407 | (2) |
|
17.1.3 Realized Variance and Quadratic Variation |
|
|
409 | (1) |
|
17.1.4 Importance of Disentangling |
|
|
410 | (1) |
|
|
411 | (1) |
|
17.2 How to Disentangle: Estimators of Integrated Variance and Integrated Covariance |
|
|
411 | (22) |
|
|
413 | (3) |
|
17.2.2 Threshold Estimator |
|
|
416 | (3) |
|
17.2.3 Threshold Bipower Variation |
|
|
419 | (2) |
|
|
421 | (1) |
|
17.2.4.1 Realized Quantile |
|
|
421 | (1) |
|
|
422 | (1) |
|
17.2.4.3 Realized Outlyingness Weighted Variation |
|
|
422 | (1) |
|
17.2.4.4 Range Bipower Variation |
|
|
423 | (1) |
|
17.2.4.5 Generalization of the Realized Range |
|
|
424 | (1) |
|
17.2.4.6 Duration-Based Variation |
|
|
425 | (1) |
|
17.2.4.7 Irregularly Spaced Observations |
|
|
425 | (1) |
|
17.2.5 Comparative Implementation on Simulated Data |
|
|
426 | (1) |
|
|
427 | (5) |
|
17.2.7 Multivariate Assets |
|
|
432 | (1) |
|
17.3 Testing for the Presence of Jumps |
|
|
433 | (11) |
|
17.3.1 Confidence Intervals |
|
|
434 | (1) |
|
17.3.2 Tests Based on IVn -- RVn or on 1 -- IVn/RVn |
|
|
434 | (2) |
|
17.3.3 Tests Based on Normalized Returns |
|
|
436 | (3) |
|
|
439 | (1) |
|
|
440 | (1) |
|
17.3.5 Tests Based on Signature Plots |
|
|
441 | (1) |
|
17.3.6 Tests Based on Observation of Option Prices |
|
|
442 | (1) |
|
|
442 | (1) |
|
17.3.7 Indirect Test for the Presence of Jumps |
|
|
443 | (1) |
|
17.3.7.1 In the Presence of Noise |
|
|
443 | (1) |
|
|
443 | (1) |
|
|
444 | (3) |
|
|
445 | (2) |
|
18 Nonparametric Tests for Intraday Jumps: Impact of Periodicity and Microstructure Noise |
|
|
447 | (18) |
|
|
447 | (2) |
|
|
449 | (1) |
|
18.3 Price Jump Detection Method |
|
|
450 | (5) |
|
18.3.1 Estimation of the Noise Variance |
|
|
451 | (1) |
|
18.3.2 Robust Estimators of the Integrated Variance |
|
|
451 | (1) |
|
18.3.3 Periodicity Estimation |
|
|
452 | (2) |
|
18.3.4 Jump Test Statistics |
|
|
454 | (1) |
|
|
454 | (1) |
|
|
455 | (5) |
|
18.4.1 Intraday Differences in the Value of the Test Statistics |
|
|
455 | (2) |
|
18.4.2 Comparison of Size and Power |
|
|
457 | (1) |
|
|
457 | (1) |
|
|
458 | (2) |
|
18.5 Comparison on NYSE Stock Prices |
|
|
460 | (2) |
|
|
462 | (3) |
|
19 Volatility Forecasts Evaluation and Comparison |
|
|
465 | (22) |
|
|
465 | (2) |
|
|
467 | (1) |
|
19.3 Single Forecast Evaluation |
|
|
468 | (3) |
|
19.4 Loss Functions and the Latent Variable Problem |
|
|
471 | (3) |
|
|
474 | (3) |
|
|
477 | (4) |
|
19.7 Consistency of the Ordering and Inference on Forecast Performances |
|
|
481 | (4) |
|
|
485 | (2) |
Bibliography |
|
487 | (50) |
Index |
|
537 | |