Atjaunināt sīkdatņu piekrišanu

E-grāmata: Hands-on Guide to Apache Spark 3: Build Scalable Computing Engines for Batch and Stream Data Processing

  • Formāts: EPUB+DRM
  • Izdošanas datums: 05-Jun-2023
  • Izdevniecība: APress
  • Valoda: eng
  • ISBN-13: 9781484293805
  • Formāts - EPUB+DRM
  • Cena: 65,42 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: EPUB+DRM
  • Izdošanas datums: 05-Jun-2023
  • Izdevniecība: APress
  • Valoda: eng
  • ISBN-13: 9781484293805

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Beginning-Intermediate user level

This book explains how to scale Apache Spark 3 to handle massive amounts of data, either via batch or streaming processing. It covers how to use Spark’s structured APIs to perform complex data transformations and analyses you can use to implement end-to-end analytics workflows.
 
This book covers Spark 3's new features, theoretical foundations, and application architecture. The first section introduces the Apache Spark ecosystem as a unified engine for large scale data analytics, and shows you how to run and fine-tune your first application in Spark. The second section centers on batch processing suited to end-of-cycle processing, and data ingestion through files and databases. It explains Spark DataFrame API as well as structured and unstructured data with Apache Spark. The last section deals with scalable, high-throughput, fault-tolerant streaming processing workloads to process real-time data. Here you'll learn about Apache Spark Streaming’s execution model, the architecture of Spark Streaming, monitoring, reporting, and recovering Spark streaming. A full chapter is devoted to future directions for Spark Streaming. With real-world use cases, code snippets, and notebooks hosted on GitHub, this book will give you an understanding of large-scale data analysis concepts--and help you put them to use.

Upon completing this book, you will have the knowledge and skills to seamlessly implement large-scale batch and streaming workloads to analyze real-time data streams with Apache Spark.

What You Will Learn
  • Master the concepts of Spark clusters and batch data processing
  • Understand data ingestion, transformation, and data storage
  • Gain insight into essential stream processing concepts and different streaming architectures
  • Implement streaming jobs and applications with Spark Streaming

Who This Book Is For
Data engineers, data analysts, machine learning engineers, Python and R programmers
Part 1: Apache Spark Batch Data Processing.
Chapter 1: Introduction to
Apache Spark for Large-Scale Data Analytics.
Chapter 2: Getting Started with
Apache Spark.- Chapter 3: Spark Low Level API.- Chapter 4: Spark High-Level
APIs.- Chapter 5: Spark Dataset API and Adaptive Query Execution.- Chapter 6:
Introduction to Apache Spark Streaming.- Chapter 7: Spark Structured
Streaming.- Chapter 8: Streaming Sources and Sinks.- Chapter 9: Event Time
Window Operations and Watermarking.
Chapter 10: Future Directions for Spark
Streaming.- Bibliography.
Alfonso Antolķnez Garcķa is a senior IT manager with a long professional career serving in several multinational companies such as Bertelsmann SE, Lafarge, and TUI AG. He has been working in the media industry, the building materials industry, and the leisure industry. Alfonso also works as a university professor, teaching artificial intelligence, machine learning, and data science. In his spare time, he writes research papers on artificial intelligence, mathematics, physics, and the applications of information theory to other sciences.