Atjaunināt sīkdatņu piekrišanu

Hardy Spaces Associated to Non-Negative Self-Adjoint Operators Satisfying Davies-Gaffney Estimates [Mīkstie vāki]

  • Formāts: Paperback / softback, 78 pages, weight: 155 g
  • Sērija : Memoirs of the American Mathematical Society
  • Izdošanas datums: 23-Dec-2011
  • Izdevniecība: American Mathematical Society
  • ISBN-10: 0821852388
  • ISBN-13: 9780821852385
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 89,83 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 78 pages, weight: 155 g
  • Sērija : Memoirs of the American Mathematical Society
  • Izdošanas datums: 23-Dec-2011
  • Izdevniecība: American Mathematical Society
  • ISBN-10: 0821852388
  • ISBN-13: 9780821852385
Citas grāmatas par šo tēmu:
Let $X$ be a metric space with doubling measure, and $L$ be a non-negative, self-adjoint operator satisfying Davies-Gaffney bounds on $L^2(X)$. In this article the authors present a theory of Hardy and BMO spaces associated to $L$, including an atomic (or molecular) decomposition, square function characterization, and duality of Hardy and BMO spaces. Further specializing to the case that $L$ is a Schrodinger operator on $\mathbb{R}^n$ with a non-negative, locally integrable potential, the authors establish additional characterizations of such Hardy spaces in terms of maximal functions. Finally, they define Hardy spaces $H^p_L(X)$ for $p>1$, which may or may not coincide with the space $L^p(X)$, and show that they interpolate with $H^1_L(X)$ spaces by the complex method.