Atjaunināt sīkdatņu piekrišanu

E-grāmata: Harmonic Measure

(University of California, Los Angeles), (University of Washington)
  • Formāts: PDF+DRM
  • Sērija : New Mathematical Monographs
  • Izdošanas datums: 04-Apr-2005
  • Izdevniecība: Cambridge University Press
  • Valoda: eng
  • ISBN-13: 9780511406331
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 77,31 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Sērija : New Mathematical Monographs
  • Izdošanas datums: 04-Apr-2005
  • Izdevniecība: Cambridge University Press
  • Valoda: eng
  • ISBN-13: 9780511406331
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

An introduction to harmonic measure on plane domains and careful discussion of the work of Makarov, Carleson, Jones and others.

This book provides an enlightening survey of remarkable new results that have only recently been discovered in the past two decades about harmonic measure in the complex plane. Many of these results, due to Bishop, Carleson, Jones, Makarov, Wolff and others, appear here in paperback for the first time. The book is accessible to students who have completed standard graduate courses in real and complex analysis. The first four chapters provide the needed background material on univalent functions, potential theory, and extremal length, and each chapter has many exercises to further inform and teach the readers.

Recenzijas

'The authors say that they wrote this book to explain the exciting new developments in the subject over the past couple of decades. They have achieved this with an impressive scholarship and outstanding expository clarity. it has clearly been written with great care and deep insight into the subject matter. I expect it to become a highly valued addition to the bookshelves of students and experienced researchers alike.' Zentralblatt MATH ' everybody who is interested in function theory and for whom Harmonic Measure sounds somewhat familiar and potentially interesting will find this book extremely useful, wonderfully well written and a joy to read.' MAA Reviews 'Over the last 20 years I have often been asked to suggest a 'good place to learn about harmonic measure,' and from now on the book of Garnett and Marshall will be my first suggestion. It's a great place for graduate students to learn an important area from the foundations up to the research frontier or for experts to locate a needed result or reference The book is well organized and well written ... It deserves a large audience because this material is fundamental to modern complex analysis and has important connections to probability, dynamics, functional analysis and other areas. It will be of immense value to both expert practitioners and students. This is one of a handful of books I keep on my desk (rather than up on a shelf), and I often look through its pages to educate or entertain myself. It is an illuminating survey of the geometric theory of harmonic measure as it stands today and is sure to become a respected textbook and standard reference that will profoundly influence the future development of the field.' Bulletin of the American Mathematical Society ' can be warmly recommended to students and researchers with a deep interest in analysis. It is an excellent preparation for serious work in complex analysis or potential theory.' EMS Newsletter

Papildus informācija

An introduction to harmonic measure on plane domains and careful discussion of the work of Makarov, Carleson, Jones and others.
Preface xiii
Jordan Domains
1(36)
The Half-Plane and the Disc
1(5)
Fatou's Theorem and Maximal Functions
6(7)
Caratheodory's Theorem
13(3)
Distortion and the Hyperbolic Metric
16(7)
The Hayman--Wu Theorem
23(14)
Notes
25(1)
Exercises and Further Results
26(11)
Finitely Connected Domains
37(36)
The Schwarz Alternating Method
37(4)
Green's Functions and Poisson Kernels
41(9)
Conjugate Functions
50(9)
Boundary Smoothness
59(14)
Notes
66(1)
Exercises and Further Results
66(7)
Potential Theory
73(56)
Capacity and Green's Functions
74(3)
The Logarithmic Potential
77(2)
The Energy Integral
79(3)
The Equilibrium Distribution
82(7)
Wiener's Solution to the Dirichlet Problem
89(4)
Regular Points
93(4)
Wiener Series
97(5)
Polar Sets and Sets of Harmonic Measure Zero
102(2)
Estimates for Harmonic Measure
104(25)
Notes
112(1)
Exercises and Further Results
112(17)
Extremal Distance
129(28)
Definitions and Examples
129(4)
Uniqueness of Extremal Metrics
133(1)
Four Rules for Extremal Length
134(5)
Extremal Metrics for Extremal Distance
139(4)
Extremal Distance and Harmonic Measure
143(3)
The ∫dx/θ(x) Estimate
146(11)
Notes
149(1)
Exercises and Further Results
150(7)
Applications and Reverse Inequalities
157(43)
Asymptotic Values of Entire Functions
157(2)
Lower Bounds
159(3)
Reduced Extremal Distance
162(4)
Teichmuller's Modulsatz
166(7)
Boundary Conformality and Angular Derivatives
173(11)
Conditions More Geometric
184(16)
Notes
193(1)
Exercises and Further Results
194(6)
Simply Connected Domains, Part One
200(29)
The F. and M. Riesz Theorem
200(3)
Privalov's Theorem and Plessner's Theorem
203(2)
Accessible Points
205(2)
Cone Points and McMillan's Theorem
207(5)
Compression and Expansion
212(4)
Pommerenke's Extension
216(13)
Notes
221(1)
Exercises and Further Results
221(8)
Bloch Functions and Quasicircles
229(40)
Bloch Functions
229(3)
Bloch Functions and Univalent Functions
232(9)
Quasicircles
241(5)
Chord-Arc Curves and the A∞ Condition
246(7)
BMO Domains
253(16)
Notes
257(1)
Exercises and Further Results
258(11)
Simply Connected Domains, Part Two
269(46)
The Law of the Iterated Logarithm for Bloch Functions
269(3)
Harmonic Measure and Hausdorff Measure
272(9)
The Number of Bad Discs
281(5)
Brennan's Conjecture and Integral Means Spectra
286(3)
β Numbers and Polygonal Trees
289(7)
The Dandelion Construction and (c) (a)
296(6)
Baernstein's Example on the Hayman--Wu Theorem
302(13)
Notes
305(2)
Exercises and Further Results
307(8)
Infinitely Connected Domains
315(32)
Cantor Sets
315(9)
For Certain Ω, dim ω < 1
324(7)
For All Ω, dim ω ≤ 1
331(16)
Notes
341(1)
Exercises and Further Results
342(5)
Rectifiability and Quadratic Expressions
347(88)
The Lusin Area Function
348(13)
Square Sums and Rectifiability
361(11)
A Decomposition Theorem
372(8)
Schwarzian Derivatives
380(4)
Geometric Estimates of Schwarzian Derivatives
384(9)
Schwarzian Derivatives and Rectifiable Quasicircles
393(4)
The Bishop--Jones H 1/2 - η Theorem
397(11)
Schwarzian Derivatives and BMO Domains
408(3)
Angular Derivatives
411(4)
A Local F. and M. Riesz Theorem
415(5)
Ahlfors Regular Sets and the Hayman--Wu Theorem
420(15)
Notes
425(1)
Exercises and Further Results
426(9)
Appendices
435(96)
A. Hardy Spaces
435(6)
B. Mixed Boundary Value Problems
441(6)
C. The Dirichlet Principle
447(9)
D. Hausdorff Measure
456(10)
E. Transfinite Diameter and Evans Functions
466(4)
F. Martingales, Brownian Motion, and Kakutani's Theorem
470(10)
G. Carleman's Method
480(4)
H. Extremal Distance in Finitely Connected Domains
484(13)
I. McMillan's Twist Point Theorem
497(6)
J. Bloch Martingales and the Law of the Iterated Logarithm
503(9)
K. A Dichotomy Theorem
512(6)
L. Two Estimates on Integral Means
518(2)
M. Calderon's Theorem and Chord-Arc Domains
520(11)
Bibliography 531(24)
Author Index 555(4)
Symbol Index 559(2)
Subject Index 561


John B. Garnett is Professor of Mathematics in the Department of Mathematics at University of California, Los Angeles. Donald E. Marshall is Professor of Mathematics in the Department of Mathematics at University of Washington, Seattle.