Atjaunināt sīkdatņu piekrišanu

E-grāmata: Health Analytics with R: Learning Data Science Using Examples from Healthcare and Direct-to-Consumer Genetics

  • Formāts: EPUB+DRM
  • Izdošanas datums: 30-Dec-2024
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783031743832
  • Formāts - EPUB+DRM
  • Cena: 107,06 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: EPUB+DRM
  • Izdošanas datums: 30-Dec-2024
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783031743832

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This textbook teaches health analytics using examples from the statistical programming language R. It utilizes real-world examples with publicly available datasets from healthcare and direct-to-consumer genetics to provide learners with real-world examples and enable them to get their hands on actual data. This textbook is designed to accompany either a senior-level undergraduate course or a Masters level graduate course on health analytics.





The reader will advance from no prior knowledge of R to being well versed in applications within R that apply to data science and health analytics.





I have never seen a book like this and think it will make an important contribution to the field. I really like that it covers environmental, social, and geospatial data. I also really like the coverage of ethics. These aspects of health analytics are often overlooked or deemphasized. I will definitely buy copies for my team.





- Jason Moore, Cedars-Sinai Medical Center





Overall, I have a highly positive impression of the book. It is VERY comprehensive. It covers very extensive data types. I do not recall other books with the same level of comprehensiveness.





- Shuangge Ma, Yale University





The book is comprehensive in both aspects of genetics, and health analytics. It covers any type of information a healthcare data scientist should be familiar with, whether they are novice or experienced. I found any chapter that I looked into comprehensive, but also not too detailed (although in general this book is more than 600 pages of comprehensive and detailed relevant information).





- Robert Moskovtich, Ben-Gurion University of the Negev
Chapter 1Introduction.
Chapter 2-Genetics Analysis for Health
Analytics.
Chapter 3-Determining Phenotypic Traits from Single Nucleotide
Polymorphism (SNP) Data.
Chapter 4-Clinical Genetic Databases: ClinVar, ACMG
Clinical Practice Guidelines.
Chapter 5-Inferring Disease Risk from
Genetics.
Chapter 6-Challenges in Health Analytics Due to Lack of Diversity
in Genetic Research: Implications and Issues with Published Knowledge.-
Chapter 7-Clinical Data and Health Data Types.
Chapter 8-Clinical Datasets:
Open Access Electronic Health Records Datasets.
Chapter 9-Association Mining
with Clinical Data: Phenotype-Wide Association Studies (PheWAS).
Chapter
10-Organizing a Clinical Study Across Multiple Clinical Systems: Common Data
Models.
Chapter 11-Environmental Health Data Types for Health Analytics.-
Chapter 12-Geospatial Analysis Using Environmental Health Data.
Chapter
13-Social Determinants of Health Data for Health Analytics.
Chapter
14-Geospatial Analysis Using Social Determinants of Health, Clinical Data and
Spatial Regression Methods.
Chapter 15Ethics.
Dr. Mary Regina Boland has been in the field of informatics/health analytics for the past 14 years, specifically in academic medical centers for 13 years. She has taught a Precision Medicine/Health Analytics course for Masters-level students at the University of Pennsylvania for 5-years (2018-2023) located in Philadelphia, PA, USA, and she is currently teaching an advanced undergraduate level course called Health Analytics at Saint Vincent College in Latrobe, PA, USA.