Atjaunināt sīkdatņu piekrišanu

Health Information Processing: 10th China Health Information Processing Conference, CHIP 2024, Fuzhou, China, November 1517, 2024, Proceedings, Part II [Mīkstie vāki]

Edited by , Edited by , Edited by , Edited by , Edited by , Edited by , Edited by , Edited by
  • Formāts: Paperback / softback, 286 pages, height x width: 235x155 mm, 68 Illustrations, color; 15 Illustrations, black and white; XVIII, 286 p. 83 illus., 68 illus. in color., 1 Paperback / softback
  • Sērija : Communications in Computer and Information Science 2433
  • Izdošanas datums: 11-Apr-2025
  • Izdevniecība: Springer Nature Switzerland AG
  • ISBN-10: 9819637511
  • ISBN-13: 9789819637515
  • Mīkstie vāki
  • Cena: 64,76 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 76,19 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 286 pages, height x width: 235x155 mm, 68 Illustrations, color; 15 Illustrations, black and white; XVIII, 286 p. 83 illus., 68 illus. in color., 1 Paperback / softback
  • Sērija : Communications in Computer and Information Science 2433
  • Izdošanas datums: 11-Apr-2025
  • Izdevniecība: Springer Nature Switzerland AG
  • ISBN-10: 9819637511
  • ISBN-13: 9789819637515
This two-volume set CCIS 2432-2433 constitutes the refereed proceedings of the 10th China Health Information Processing Conference, CHIP 2024, held in Fuzhou, China, during November 1517, 2024.





The 32 full papers included in this set were carefully reviewed and selected from 65 submissions.





They are organized in topical sections as follows: biomedical data processing and model application; mental health and disease prediction; and drug prediction and knowledge map.
.- Mental health and disease prediction.


.- Data Augmentation and Instruction Fine-Tuning for ADR Detection.


.- Deep Fusion Network with Feature Engineering for Discharge Risk
Assessment.


.- Analysis of Risk Factors for Hemorrhagic Complications in Pediatric Acute
Liver Failure.


.- PMFNet: Pseudo-modal fusion network for obstructive sleep apnea detection
using single-lead ECG signals.


.- VisionLLM-based Multimodal Fusion Network for Glottic Carcinoma Early
Detection.


.- RAG Combined with Instruction Tuning for Traditional Chinese Medicine
Syndrome Differentiation Thinking.


.- Drug prediction and Knowledge map.


.- MBF-DTI: A fused multi-dimensional biochemical feature-based drug target
prediction method based on heterogeneous graph attention networks.


.- Structure and pseudo-ligand based drug discovery for disease targets.


.- Multi-channel hypergraph convolutional network predicts circRNA-drug
sensitivity associations.


.- Knowledge Infusion Framework with LLMs for Few-Shot Biomedical Relation
Extraction.


.- A review of drug-target interaction prediction methods.


.- The Joint Entity-Relation Extraction Model Based on Span and Interactive
Fusion Representation for Chinese Medical Texts with Complex Semantics.


.- Multi-task learning-based knowledge graph question answering for pediatric
epilepsy.


.- Hypertension Medication Recommendation Based on Synergy and Selectivity of
Heterogeneous Medical Entities.


.- Integrating TCM's "One Root of Medicine and Food" Principle into Dietary
Recommendations with Retrieval-Augmented LLMs.


.- OAGLLM: A Retrieval-Augmented Large Language Model for Medication
Instructions.