Atjaunināt sīkdatņu piekrišanu

E-grāmata: Health Information Processing: 9th China Health Information Processing Conference, CHIP 2023, Hangzhou, China, October 27-29, 2023, Proceedings

Edited by , Edited by , Edited by , Edited by , Edited by , Edited by , Edited by , Edited by
  • Formāts - PDF+DRM
  • Cena: 88,63 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book constitutes the refereed proceedings of the 9th China Health Information Processing Conference, CHIP 2023, held in Hangzhou, China, during October 27–29, 2023. 

The 27 full papers included in this book were carefully reviewed and selected from 66 submissions. They were organized in topical sections as follows: healthcare information extraction; healthcare natural language processing; healthcare data mining and applications.
TIG-KIGNN: Time Interval Guided Knowledge Inductive Graph Neural Network
for misinformation detection from Social Media.- A Bert based relation
extraction method with inter-entity constraints for Chinese EHRs.- Automatic
Generation of Discharge Summary of EMRs Based on Multi-granularity
Information Fusion.- A BART-based Study of Entity-Relationship Extraction for
Electronic Medical Records of Cardiovascular Diseases.- Multilevel
Asynchronous Time Network for Medication Recommendation.- Biomedical Event
Detection of Based on Dependency Analysis and Graph Convolution Network.-
Multi-head Attention and Graph Convolutional Networks with Regularized
Dropout for Biomedical Relation Extraction.- Privacy-preserving Medical
Dialogue Generation Based on Federated Learning.- Cross-Lingual Name Entity
Recognition from Clinical Text using Mixed Language Query.- PEMRC: A Positive
Enhanced Machine Reading Comprehension Method for Few-Shot Named Entity
Recognition in Biomedical Domain.- Research on Double-Graphs
Knowledge-Enhanced Intelligent Diagnosis.- FgKF: Fine-grained Knowledge
Fusion for Radiology Report Generation.- Medical Entity recognition with
few-shot based on Chinese character radicals.- Biomedical causal relation
extraction incorporated with external knowledge.- Research on structured lung
cancer electronic medical records based on BART joint extraction.- Biomedical
Named Entity Recognition Based on Multi-task Learning.- Biomedical Relation
Extraction via Syntax-Enhanced Contrastive Networks.- Entity Fusion
Contrastive Inference Network for Biomedical Document Relation
Extraction.- An Unsupervised Clinical Acronym Disambiguation Method based on
Pretrained Language Model.- Combining Biaffine Model and Constraints
Inference for Chinese Clinical Temporal Relation Extraction.- Automatic
Prediction of Multiple Associated Diseases Using A Dual-attention Neural
Network Model.- Chapter-level Stepwise Temporal Relation Extraction Based on
Event Information for Chinese Clinical Medical Texts.- Constructing a
Multi-scale Medical Knowledge Graph from Electronic Medical Records.- Double
Graph Convolution Network with Knowledge Distillation for International Media
Portrait Analysis of COVID-19.- A Simple but Useful Multi-corpus Transferring
Method for Biomedical Named Entity Recognition.- Time Series Prediction
Models for Assisting the Diagnosis and Treatment of Gouty
Arthritis.- Asymptomatic carriers are associated with shorter negative
conversion time in children with Omicron infections.