Atjaunināt sīkdatņu piekrišanu

Healthcare Big Data Analytics: Computational Optimization and Cohesive Approaches [Hardback]

  • Formāts: Hardback, 354 pages, height x width: 240x170 mm, weight: 710 g, 33 Tables, black and white; 17 Illustrations, black and white; 86 Illustrations, color
  • Sērija : Intelligent Biomedical Data Analysis
  • Izdošanas datums: 18-Mar-2024
  • Izdevniecība: De Gruyter
  • ISBN-10: 3110750732
  • ISBN-13: 9783110750737
  • Hardback
  • Cena: 189,10 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 354 pages, height x width: 240x170 mm, weight: 710 g, 33 Tables, black and white; 17 Illustrations, black and white; 86 Illustrations, color
  • Sērija : Intelligent Biomedical Data Analysis
  • Izdošanas datums: 18-Mar-2024
  • Izdevniecība: De Gruyter
  • ISBN-10: 3110750732
  • ISBN-13: 9783110750737

This book highlights how optimized big data applications can be used for patient monitoring and clinical diagnosis. In fact, IoT based applications are data driven and mostly employs modern optimization techniques. This book also explores challenges, opportunities, and future research directions, and discusses the data collection and pre-processing stages, challenges and issues in data collection, data handling, and data collection set-up.

THE SERIES: INTELLIGENT BIOMEDICAL DATA ANALYSIS
By focusing on the methods and tools for intelligent data analysis, this series aims to narrow the increasing gap between data gathering and data comprehension. Emphasis is also given to the problems resulting from automated data collection in modern hospitals, such as analysis of computer-based patient records, data warehousing tools, intelligent alarming, effective and efficient monitoring. In medicine, overcoming this gap is crucial since medical decision making needs to be supported by arguments based on existing medical knowledge as well as information, regularities and trends extracted from big data sets.
R. Panigrahi, A. Kumar Bhoi, Sikkim Manipal U, India; V. H. de Albuquerque, ARMTEC Fortaleza, Brazil; R. H. Jhaveri, PDPU, India.