Atjaunināt sīkdatņu piekrišanu

E-grāmata: Heavy WIMP Effective Theory: Formalism and Applications for Scattering on Nucleon Targets

  • Formāts: PDF+DRM
  • Sērija : Springer Theses
  • Izdošanas datums: 22-Feb-2016
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783319251998
  • Formāts - PDF+DRM
  • Cena: 106,47 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Sērija : Springer Theses
  • Izdošanas datums: 22-Feb-2016
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783319251998

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book is about dark matter"s particle nature and the implications of a new symmetry that appears when a hypothetical dark matter particle is heavy compared to known elementary particles. Dark matter exists and composes about 85% of the matter in the universe, but it cannot be explained in terms of the known elementary particles. Discovering dark matter"s particle nature is one of the most pressing open problems in particle physics. This thesis derives the implications of a new symmetry that appears when the hypothetical dark matter particle is heavy compared to the known elementary particles, a situation which is well motivated by the null results of searches at the LHC and elsewhere. The new symmetry predicts a universal interaction between dark matter and ordinary matter, which in turn may be used to determine the event rate and detectable energy in dark matter direct detection experiments. The computation of heavy wino and higgsino dark matter presented in this work has bec

ome a benchmark for the field of direct detection. This thesis has also spawned a new field of investigation in dark matter indirect detection, determining heavy WIMP annihilation rates using effective field theory methods. It describes a new formalism for implementing Lorentz invariance constraints in nonrelativistic theories, with a surprising result at 1/M^4 order that contradicts the prevailing ansatz in the past 20 years of heavy quark literature. The author has also derived new perturbative QCD results to provide the definitive analysis of key Standard Model observables such as heavy quark scalar matrix elements of the nucleon. This is an influential thesis, with impacts in dark matter phenomenology, field theory formalism and precision hadronic physics.

Heavy WIMP Effective Theory.- Introduction.- Universal heavy WIMP limit.- Motivations for heavy WIMP effective theory.- Chapter organization.- Heavy-Particle Spacetime Symmetries and Building Blocks.- Finite dimensional representations of the Lorentz algebra.- Effective field theory and the little group.- Reparametrization invariance and invariant operators.- Higher-spin and self-conjugate fields.- NRQED example: Lagrangian.- NRQED example: Relativistic invariance.- NRQED example: one-photon matching.- NRQED example: photon and four-fermion sectors.- Discussion.- Effective Theory at the Weak-Scale.- Singlet.- Multiplets and Mixtures.- Onshell Renormalization Scheme.- Low Energy theory at the weak scale for pure- and mixed-state WIMPs.- Weak-Scale Matching.- Singlet.- Multiplets and mixtures.- QCD Analysis and Hadronic Matrix Elements.- Operator renormalization.- Renormalization group evolution.- Threshold matching and low energy coefficients.- Hadronic matrix elements.- Heavy WIMP

-Nucleon Scattering Cross Sections.- Cross section assembly line.- Survey of uncertainties.- Cross section predictions and consistency checks.- Conclusions.
1 Heavy WIMP Effective Theory
1(12)
1.1 Introduction
1(3)
1.2 Universal Heavy WIMP Limit
4(3)
1.3 Motivations for Heavy WIMP Effective Theory
7(2)
1.4
Chapter Organization
9(4)
2 Heavy-Particle Spacetime Symmetries and Building Blocks
13(36)
2.1 Finite Dimensional Representations of the Lorentz Algebra
16(2)
2.2 Effective Field Theory and the Little Group
18(6)
2.2.1 Little Group Formalism
18(2)
2.2.2 Field Transformation Law and Lorentz Invariance
20(2)
2.2.3 1/M Expansion and Lagrangian Constraints
22(2)
2.3 Reparametrization Invariance and Invariant Operators
24(6)
2.3.1 Covariant Notation
24(2)
2.3.2 Reparametrization Invariance
26(1)
2.3.3 Invariant Operator Method
26(1)
2.3.4 Solution for Γ(υ, iD)
27(3)
2.4 Higher-Spin and Self-conjugate Fields
30(3)
2.4.1 Higher Spin Representations
30(2)
2.4.2 Self-conjugate Parity and CPT
32(1)
2.5 NRQED Example: Lagrangian
33(2)
2.6 NRQED Example: Relativistic Invariance
35(3)
2.6.1 Variational Method
35(2)
2.6.2 Invariant Operators
37(1)
2.7 NRQED Example: One-Photon Matching
38(2)
2.8 NRQED Example: Photon and Four-Fermion Sectors
40(6)
2.8.1 Pure Photon Operators
40(1)
2.8.2 Four-Fermion Operators
41(2)
2.8.3 Field Redefinitions and Redundant Operators
43(2)
2.8.4 Relativistic Lepton
45(1)
2.9 Discussion
46(3)
3 Effective Theory at the Weak-Scale
49(28)
3.1 Singlet
50(7)
3.1.1 Standard Model Building Blocks
50(3)
3.1.2 Dark Matter Building Blocks
53(1)
3.1.3 High-Energy Basis
53(2)
3.1.4 Low-Energy Basis
55(2)
3.2 Multiplets and Mixtures
57(12)
3.2.1 Pure States
59(2)
3.2.2 Higher-Order Example: Pure Triplet Scalar
61(2)
3.2.3 Admixtures
63(4)
3.2.4 Pure Case Limits
67(1)
3.2.5 Relativistic Example: Singlet-Doublet Mixture
68(1)
3.3 Onshell Renormalization Scheme
69(6)
3.3.1 Singlet-Doublet Counterterm Lagrangian
69(1)
3.3.2 Propagator Corrections
70(2)
3.3.3 Renormalization Conditions
72(1)
3.3.4 Extension to Triplet-Doublet
73(2)
3.4 Low Energy Theory at the Weak Scale for Pure- and Mixed-State WIMPs
75(2)
4 Weak-Scale Matching
77(42)
4.1 Singlet
78(3)
4.1.1 Case I: M <~ mb <<: mw
78(2)
4.1.2 Case II: mw < ~ M
80(1)
4.1.3 Case III: mw << M
81(1)
4.2 Multiplets and Mixtures
81(38)
4.2.1 Quark Matching: One-Boson Exchange
82(4)
4.2.2 Gluon Matching: One-Boson Exchange
86(1)
4.2.3 Quark Matching: Two-Boson Exchange
87(5)
4.2.4 Gluon Matching: Two-Boson Exchange
92(20)
4.2.5 Effective Theory Amplitudes and Infrared Regulator
112(1)
4.2.6 Extended Higgs Sector for Pure Case
113(1)
4.2.7 Bare Matching Coefficients
114(5)
5 QCD Analysis and Hadronic Matrix Elements
119(16)
5.1 Operator Renormalization
120(5)
5.1.1 Renormalization Constants
121(2)
5.1.2 Renormalized Matching Coefficients for Pure States
123(2)
5.2 Renormalization Group Evolution
125(2)
5.3 Threshold Matching and Low Energy Coefficients
127(3)
5.3.1 Heavy Quark Threshold Matching Conditions
128(1)
5.3.2 Low Energy Coefficients
129(1)
5.4 Hadronic Matrix Elements
130(5)
5.4.1 Scalar Matrix Elements
130(2)
5.4.2 Tensor Matrix Elements
132(3)
6 Heavy WIMP-Nucleon Scattering Cross Sections
135(12)
6.1 Cross Section Assembly Line
136(2)
6.2 Survey of Uncertainties
138(2)
6.3 Cross Section Predictions and Consistency Checks
140(7)
7 Conclusions
147(4)
Appendix A Solution to the Invariance Equation
151(6)
A.1 Series Solution for Γ
151(2)
A.2 Explicit Solution for Γ in the Spin 1/2 Theory
153(4)
Appendix B Integrals and Inputs for Weak Scale Matching
157(16)
B.1 Self Energy Integrals and Standard Model Two-Point Functions
157(4)
B.2 Box Integrals
161(4)
B.3 Heavy Particle Integrals with Electroweak Polarization Tensor Insertion
165(5)
B.3.1 Case of Zero Heavy Fermions
166(1)
B.3.2 Case of One Heavy Fermion
167(3)
B.3.3 Case of Two Heavy Fermions
170(1)
B.4 Numerical Inputs
170(3)
Appendix C Inputs for Analysis of QCD Effects and Hadronic Matrix Elements
173(2)
C.1 QCD Functions
173(2)
References 175