Atjaunināt sīkdatņu piekrišanu

E-grāmata: Heterogeneous Data Management, Polystores, and Analytics for Healthcare: VLDB Workshops, Poly 2020 and DMAH 2020, Virtual Event, August 31 and September 4, 2020, Revised Selected Papers

Edited by , Edited by , Edited by , Edited by , Edited by , Edited by , Edited by , Edited by
  • Formāts: PDF+DRM
  • Sērija : Security and Cryptology 12633
  • Izdošanas datums: 03-Mar-2021
  • Izdevniecība: Springer Nature Switzerland AG
  • Valoda: eng
  • ISBN-13: 9783030710552
  • Formāts - PDF+DRM
  • Cena: 53,52 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Sērija : Security and Cryptology 12633
  • Izdošanas datums: 03-Mar-2021
  • Izdevniecība: Springer Nature Switzerland AG
  • Valoda: eng
  • ISBN-13: 9783030710552

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book constitutes revised selected papers from two VLDB workshops: The International Workshop on Polystore Systems for Heterogeneous Data in Multiple Databases with Privacy and Security Assurances, Poly 2020, and the 6th International Workshop on Data Management and Analytics for Medicine and Healthcare, DMAH 2020, which were held virtually on August 31 and September 4, 2020.

For Poly 2020, 4 full and 3 short papers were accepted from 10 submissions; and for DMAH 2020, 7 full and 2 short papers were accepted from a total of 15 submissions. The papers were organized in topical sections as follows: Privacy, Security and/or Policy Issues for Heterogenous Data; COVID-19 Data Analytics and Visualization; Deep Learning based Biomedical Data Analytics; NLP based Learning from Unstructured Data; Biomedical Data Modelling and Prediction.

Poly 2020: Privacy, Security and/or Policy Issues for Heterogenous
Data.- A Polystore Based Database Operating System (DBOS).- Polypheny-DB:
Towards Bridging the Gap Between Polystores and HTAP Systems.- Persona Model
Transfer for User Activity Prediction across Heterogeneous Domains.-
PolyMigrate: Dynamic Schema Evolution and Data Migration in a Distributed
Polystore.- An Architecture for the Development of Distributed Analytics
based on Polystore Events.- Towards Data Discovery by Example.- The
Transformers for Polystores - the next frontier for Polystore research.- DMAH
2020: COVID-19 Data Analytics and Visualization.- Open-world COVID-19 Data
Visualization.- DMAH 2020: Deep Learning based Biomedical Data Analytics.-
Privacy-Preserving Knowledge Transfer with Bootstrap Aggregation of Teacher
Ensembles.- An Intelligent and Efficient Rehabilitation Status Evaluation
Method: A Case Study on Stroke Patients.- Multiple Interpretations Improve
Deep Learning Transparency for Prostate Lesion Detection.- DMAH 2020: NLP
based Learning from Unstructured Data.- Tracing State-Level Obesity
Prevalence from Sentence Embeddings of Tweets: A Feasibility Study.-
Enhancing Medical Word Sense Inventories Using Word Sense Induction: A
Preliminary Study.- DMAH 2020: Biomedical Data Modelling and Prediction.-
Teaching analytics medical-data common sense.- CDRGen: A Clinical Data
Registry Generator.- Prediction of lncRNA-disease associations from
tripartite graphs.- DMAH 2020: Invited Paper.- Parameter Sensitivity Analysis
for the Progressive Sampling-Based Bayesian Optimization Method for Automated
Machine Learning Model Selection.