Atjaunināt sīkdatņu piekrišanu

E-grāmata: Hex: The Full Story [Taylor & Francis e-book]

(University of Alberta), (University of Southern Copenhangen)
  • Formāts: 298 pages, 190 Line drawings, black and white; 71 Halftones, black and white; 264 Illustrations, black and white
  • Sērija : AK Peters/CRC Recreational Mathematics Series
  • Izdošanas datums: 29-Jan-2019
  • Izdevniecība: CRC Press
  • ISBN-13: 9780429031960
  • Taylor & Francis e-book
  • Cena: 249,01 €*
  • * this price gives unlimited concurrent access for unlimited time
  • Standarta cena: 355,74 €
  • Ietaupiet 30%
  • Formāts: 298 pages, 190 Line drawings, black and white; 71 Halftones, black and white; 264 Illustrations, black and white
  • Sērija : AK Peters/CRC Recreational Mathematics Series
  • Izdošanas datums: 29-Jan-2019
  • Izdevniecība: CRC Press
  • ISBN-13: 9780429031960
Hex: The Full Story is for anyone - hobbyist, professional, student, teacher - who enjoys board games, game theory, discrete math, computing, or history. hex was discovered twice, in 1942 by Piet Hein and again in 1949 by John F. nash. How did this happen? Who created the puzzle for Hein's Danish newspaper column? How are Martin Gardner, David Gale, Claude Shannon, and Claude Berge involved? What is the secret to playing Hex well? The answers are inside...

Features





New documents on Hein's creation of Hex, the complete set of Danish puzzles, and the identity of their composer Chapters on Gale's game Bridg-it, the game Rex, computer Hex, open Hex problems, and more Dozens of new puzzles and solutions Study guide for Hex players Supplemenetary text for a course in game theory, discrete math, computer science, or science history
Prologue xi
Preface xv
Acknowledgments xvii
Permissions xix
Rules of Hex xxi
1 Birth 1(14)
1.1 Polygon
1(3)
1.2 Design of Hex: first part
4(1)
1.3 Four colours and crossing lines
5(3)
1.4 War and poems
8(2)
1.5 Design of Hex: final part
10(5)
2 Preparing to launch 15(12)
2.1 Will Polygon sell?
15(1)
2.2 Call for puzzles
16(5)
2.3 Parenthesis talk
21(6)
3 Politiken 27(36)
3.1 Vil De laere Polygon?
27(4)
3.2 Polygon columns
31(4)
3.3 Polygon pads
35(6)
3.4 Polygon salons
41(7)
3.5 Lindhard-Moller game
48(3)
3.6 Polygon peters out
51(12)
4 Polygon puzzlist 63(30)
4.1 Mystery of missing drafts
63(2)
4.2 Puzzle drafts
65(4)
4.3 Thorborg puzzle
69(1)
4.4 Unpublished Polygon booklet
70(2)
4.5 Tornehave Gambit
72(5)
4.6 Hein-Lindhard game
77(1)
4.7 Perplexing Puzzle 45
78(2)
4.8 War
80(8)
4.9 Solutions
88(5)
5 Rebirth 93(16)
5.1 New game in Fine Hall
93(2)
5.2 First player wins
95(4)
5.3 No draws
99(3)
5.4 Longer side wins
102(2)
5.5 Hex gets its name
104(5)
6 Games and machines 109(18)
6.1 Contagion
109(1)
6.2 1-2-2 Hex
110(1)
6.3 Rex
111(1)
6.4 Gale's game, or Bridg-it
111(3)
6.5 Y
114(4)
6.6 Poly-Y
118(1)
6.7 Switches
119(5)
6.8 Solutions
124(3)
7 Hex goes global 127(14)
7.1 Mathematical games
127(4)
7.2 Hex history mystery
131(10)
8 Is Hex easy? 141(14)
8.1 Bridg-it falls
141(5)
8.2 Solving Bridg-it: an example
146(3)
8.3 Will Hex fall?
149(1)
8.4 Losing Hex openings
150(1)
8.5 Hex is probably hard
151(4)
9 Hex theory 155(18)
9.1 Side connections
156(1)
9.2 Art of Hex
156(9)
9.3 Inferior cell analysis
165(2)
9.4 Handicap strategy
167(3)
9.5 Solutions
170(3)
10 Rex theory 173(12)
10.1 Winning openings
174(2)
10.2 Terminated Rex
176(3)
10.3 Pairing strategies
179(1)
10.4 Inferior cells
180(5)
11 Quest for strategies 185(20)
11.1 Lindhard's 6x6 strategy
186(5)
11.2 Letters to Gardner
191(1)
11.3 Back to Pittsburgh
191(4)
11.4 Go lessons
195(2)
11.5 Computers and games
197(1)
11.6 Automated solvers
198(4)
11.7 Solutions
202(3)
12 Rise of bots 205(18)
12.1 Shannon's circuit
205(1)
12.2 Adding virtual connections
206(2)
12.3 Battling hots
208(1)
12.4 Monte Carlo Tree Search
209(5)
12.5 Almost human
214(4)
12.6 AlphaGo
218(1)
12.7 Neural net Hex-bots
219(4)
Epilogue 223(2)
Chronology 225(4)
Appendix A: Politiken puzzles 229(14)
A.1 Politiken Polygon puzzles
229(6)
A.2 Politiken Polygon openings
235(2)
A.3 Politiken Polygon solutions
237(6)
Appendix B: Unpublished Lindhard puzzles 243(12)
B.1 Lindhard puzzles
243(4)
B.2 Lindhard openings
247(3)
B.3 Lindhard solutions
250(5)
Appendix C: Henderson Hex puzzles 255(20)
C.1 Henderson puzzles
255(9)
C.2 Henderson solutions
264(11)
Appendix D: Rex puzzles 275(4)
D.1 Rex puzzles
275(2)
D.2 Rex solutions
277(2)
Appendix E: Open problems 279(6)
E.1 Winning cells
279(3)
E.2 Inferior cells
282(1)
E.3 Efficient wins
282(1)
E.4 Losing cells in Rex
283(1)
E.5 Simple heuristics
284(1)
E.6 Cylindrical Hex
284(1)
Bibliography 285(6)
Index 291
Ryan B. Hayward is Professor of Computer Science at the University of Alberta, Canada.

Bjarne Toft is Professor Emeritus at the Univeristy of Southern Denmark.