Atjaunināt sīkdatņu piekrišanu

High Dimensional Probability VI: The Banff Volume 2013 ed. [Hardback]

Edited by , Edited by , Edited by , Edited by
  • Formāts: Hardback, 374 pages, height x width: 235x155 mm, weight: 7037 g, XIII, 374 p., 1 Hardback
  • Sērija : Progress in Probability 66
  • Izdošanas datums: 30-Apr-2013
  • Izdevniecība: Birkhauser Verlag AG
  • ISBN-10: 303480489X
  • ISBN-13: 9783034804899
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 136,16 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 160,19 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 374 pages, height x width: 235x155 mm, weight: 7037 g, XIII, 374 p., 1 Hardback
  • Sērija : Progress in Probability 66
  • Izdošanas datums: 30-Apr-2013
  • Izdevniecība: Birkhauser Verlag AG
  • ISBN-10: 303480489X
  • ISBN-13: 9783034804899
Citas grāmatas par šo tēmu:
This is a collection of papers by participants at High Dimensional Probability VI Meeting held from October 9-14, 2011 at the Banff International Research Station in Banff, Alberta, Canada. 

High Dimensional Probability (HDP) is an area of mathematics that includes the study of probability distributions and limit theorems in infinite-dimensional spaces such as Hilbert spaces and Banach spaces. The most remarkable feature of this area is that it has resulted in the creation of powerful new tools and perspectives, whose range of application has led to interactions with other areas of mathematics, statistics, and computer science. These include random matrix theory, nonparametric statistics, empirical process theory, statistical learning theory, concentration of measure phenomena, strong and weak approximations, distribution function estimation in high dimensions, combinatorial optimization, and random graph theory.

The papers in this volume show that HDP theory continues to develop new tools, methods, techniques and perspectives to analyze the random phenomena. Both researchers and advanced students will find this book of great use for learning about new avenues of research.
Preface vii
Participants xii
Dedication xiii
Part I Inequalities and Convexity
Bracketing Entropy of High Dimensional Distributions
3(16)
F. Gao
Slepian's Inequality, Modularity and Integral Orderings
19(36)
J. Hoffmann-Jørgensen
A More General Maximal Bernstein-type Inequality
55(8)
P. Kevei
D.M. Mason
Maximal Inequalities for Centered Norms of Sums of Independent Random Vectors
63(10)
R. Latata
A Probabilistic Inequality Related to Negative Definite Functions
73(8)
M. Lifshits
R.L. Schilling
I. Tyurin
Optimal Re-centering Bounds, with Applications to Rosenthal-type Concentration of Measure Inequalities
81(14)
I. Pinelis
Strong Log-concavity is Preserved by Convolution
95(8)
J.A. Wellner
On Some Gaussian Concentration Inequality for Non-Lipschitz Functions
103(10)
P. Wolff
Part II Limit Theorems
Rates of Convergence in the Strong Invariance Principle for Non-adapted Sequences. Application to Ergodic Automorphisms of the Torus
113(26)
J. Dedecker
F. Merlevede
F. Pene
On, the Rate of Convergence to the Semi-circular Law
139(28)
F. Gotze
A. Tikhomirov
Empirical Quantile CLTs for Time-dependent Data
167(28)
J. Kuelbs
J. Zinn
Asymptotic Properties for Linear Processes of Functionals of Reversible or Normal Markov Chains
195(18)
M. Peligrad
Part III Stochastic Processes
First Exit of Brownian Motion from a One-sided Moving Boundary
213(6)
F. Aurzada
T. Kramm
On Levy's Equivalence Theorem in Skorohod Space
219(8)
A. Basse-O'Connor
J. Rosinski
Continuity Conditions for a Class of Second-order Permanental Chaoses
227(20)
M.B. Marcus
J. Rosen
Part IV Random Matrices and Applications
On the Operator Norm of Random Rectangular Toeplitz Matrices
247(14)
R. Adamczak
Edge Fluctuations of Eigenvalues of Wigner Matrices
261(16)
H. Doring
P. Eichelsbacher
On the Limiting Shape of Young Diagrams Associated with Inhomogeneous Random Words
277(28)
C. Houdre
H. Xu
Part V High Dimensional Statistics
Low Rank Estimation of Similarities on Graphs
305(22)
V. Koltchinskii
P. Rangel
Sparse Principal Component Analysis with Missing Observations
327(30)
K. Lounici
High Dimensional CLT and its Applications
357
D. Radulovic