Atjaunināt sīkdatņu piekrišanu

High Dimensional Probability VI: The Banff Volume 2013 ed. [Mīkstie vāki]

Edited by , Edited by , Edited by , Edited by
  • Formāts: Paperback / softback, 374 pages, height x width: 235x155 mm, weight: 5854 g, XIII, 374 p., 1 Paperback / softback
  • Sērija : Progress in Probability 66
  • Izdošanas datums: 22-May-2015
  • Izdevniecība: Birkhauser Verlag AG
  • ISBN-10: 3034807996
  • ISBN-13: 9783034807999
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 136,16 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 160,19 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 374 pages, height x width: 235x155 mm, weight: 5854 g, XIII, 374 p., 1 Paperback / softback
  • Sērija : Progress in Probability 66
  • Izdošanas datums: 22-May-2015
  • Izdevniecība: Birkhauser Verlag AG
  • ISBN-10: 3034807996
  • ISBN-13: 9783034807999
Citas grāmatas par šo tēmu:
This is a collection of papers by participants at High Dimensional Probability VI Meeting held from October 9-14, 2011 at the Banff International Research Station in Banff, Alberta, Canada. 

High Dimensional Probability (HDP) is an area of mathematics that includes the study of probability distributions and limit theorems in infinite-dimensional spaces such as Hilbert spaces and Banach spaces. The most remarkable feature of this area is that it has resulted in the creation of powerful new tools and perspectives, whose range of application has led to interactions with other areas of mathematics, statistics, and computer science. These include random matrix theory, nonparametric statistics, empirical process theory, statistical learning theory, concentration of measure phenomena, strong and weak approximations, distribution function estimation in high dimensions, combinatorial optimization, and random graph theory.

The papers in this volume show that HDP theory continues to develop new tools, methods, techniques and perspectives to analyze the random phenomena. Both researchers and advanced students will find this book of great use for learning about new avenues of research.