|
Radio Pulsar Phenomenology |
|
|
1 | (20) |
|
|
|
|
1 | (1) |
|
|
2 | (2) |
|
3 Integrated profiles and polarization |
|
|
4 | (4) |
|
|
5 | (1) |
|
|
5 | (1) |
|
|
6 | (1) |
|
3.4 Position angle swing and orthogonal modes |
|
|
7 | (1) |
|
3.5 Circular polarization |
|
|
7 | (1) |
|
|
8 | (2) |
|
5 Problems and Perils of the RVM |
|
|
10 | (1) |
|
6 Radius-to-Frequency mapping |
|
|
11 | (1) |
|
7 Velocity - spin axis alignment |
|
|
12 | (1) |
|
|
12 | (2) |
|
|
12 | (1) |
|
|
13 | (1) |
|
8.3 Karastergiou & Johnston |
|
|
14 | (1) |
|
|
14 | (2) |
|
9.1 The radio loud magnetars |
|
|
14 | (1) |
|
|
15 | (1) |
|
|
16 | (1) |
|
11 Future instruments and the Square Kilometre Array |
|
|
17 | (4) |
|
|
18 | (3) |
|
|
21 | (16) |
|
|
1 Selection effects in radio pulsar surveys |
|
|
21 | (3) |
|
1.1 Flux-distance relationship |
|
|
22 | (1) |
|
1.2 The radio sky background |
|
|
22 | (1) |
|
1.3 Propagation effects in the interstellar medium |
|
|
22 | (1) |
|
1.4 Finite size of the emission beam |
|
|
23 | (1) |
|
|
24 | (1) |
|
|
24 | (1) |
|
2 Correcting the biases in the observed sample |
|
|
24 | (2) |
|
|
26 | (6) |
|
3.1 Pulsar space distribution |
|
|
26 | (2) |
|
|
28 | (1) |
|
|
28 | (2) |
|
|
30 | (1) |
|
|
31 | (1) |
|
4 Final thoughts and future prospects |
|
|
32 | (5) |
|
4.1 Rotating radio transients |
|
|
32 | (1) |
|
|
32 | (1) |
|
4.3 Pulsars in the Magellanic Clouds |
|
|
33 | (1) |
|
4.4 Globular cluster pulsars |
|
|
33 | (1) |
|
|
34 | (3) |
|
Pulsar Results with the Fermi Large Area Telescope |
|
|
37 | (20) |
|
|
|
|
37 | (2) |
|
1.1 Gamma-ray Pulsars in the Year 2000 |
|
|
37 | (1) |
|
|
38 | (1) |
|
2 The EGRET Pulsars in Exquisite Detail |
|
|
39 | (3) |
|
3 Young Pulsars Found Using Radio Ephemerides |
|
|
42 | (1) |
|
|
42 | (4) |
|
|
43 | (1) |
|
4.2 Searches of LAT Unassociated Sources |
|
|
44 | (1) |
|
4.3 Globular Cluster MSPs |
|
|
45 | (1) |
|
5 Blind Periodicity Searches |
|
|
46 | (2) |
|
6 Pulsar Timing with the LAT |
|
|
48 | (1) |
|
7 Multiwavelength Connections |
|
|
49 | (3) |
|
8 The LAT Pulsar Population |
|
|
52 | (2) |
|
|
54 | (3) |
|
|
55 | (2) |
|
Fermi view of the EGRET pulsars |
|
|
57 | (6) |
|
|
|
57 | (1) |
|
|
58 | (3) |
|
|
61 | (2) |
|
|
61 | (2) |
|
"Garden-variety" Gamma-ray Pulsars J0248+6021 & J2240+5832 |
|
|
63 | (6) |
|
|
|
63 | (1) |
|
2 Two Not-So-Typical Pulsars |
|
|
64 | (1) |
|
|
64 | (1) |
|
4 Understanding the Beams |
|
|
65 | (1) |
|
|
66 | (3) |
|
|
67 | (2) |
|
Extension studies of galactic sources with Fermi |
|
|
69 | (6) |
|
|
|
69 | (3) |
|
2 Galactic extended SNRs: the W51C, the W44 and the IC443 |
|
|
72 | (1) |
|
|
73 | (2) |
|
|
73 | (2) |
|
Advances in understanding double features in radio pulsar profiles |
|
|
75 | (4) |
|
|
|
|
|
75 | (1) |
|
|
76 | (3) |
|
|
78 | (1) |
|
Emission from the Polar Cap and Slot Gap |
|
|
79 | (20) |
|
|
|
|
79 | (1) |
|
2 Polar cap and slot gap electrodynamics |
|
|
80 | (4) |
|
2.1 Polar cap pair cascades |
|
|
81 | (1) |
|
|
82 | (2) |
|
3 Geometry of high-energy radiation |
|
|
84 | (1) |
|
4 Confronting the Fermi observations |
|
|
85 | (11) |
|
|
86 | (1) |
|
4.2 Population synthesis and light curve fitting |
|
|
87 | (7) |
|
4.3 New insights from the increasing γ-ray MSP Population |
|
|
94 | (2) |
|
5 Learning from Nature - Future pulsar modeling |
|
|
96 | (3) |
|
|
97 | (2) |
|
Gamma-ray emission and pair creation of outer gap |
|
|
99 | (18) |
|
|
|
99 | (1) |
|
2 Two dimensional outergap model |
|
|
100 | (8) |
|
|
101 | (2) |
|
2.2 Curvature radiation spectrum |
|
|
103 | (1) |
|
2.3 Properties of curvature spectra with gap parameters |
|
|
104 | (1) |
|
|
105 | (3) |
|
3 Pair creation mechanisms |
|
|
108 | (7) |
|
3.1 Photon-photon pair-creation process |
|
|
108 | (1) |
|
3.2 New gap closure mechanism |
|
|
109 | (3) |
|
3.3 Predictions of new outer gap model |
|
|
112 | (3) |
|
|
115 | (2) |
|
|
115 | (2) |
|
What Pulsar High-Energy Emission Model Survives? |
|
|
117 | (22) |
|
|
|
117 | (3) |
|
|
120 | (5) |
|
2.1 Poisson Equation for Electrostatic Potential |
|
|
120 | (2) |
|
2.2 Particle Boltzmann Equations |
|
|
122 | (1) |
|
2.3 Radiative Transfer Equation |
|
|
123 | (1) |
|
|
124 | (1) |
|
3 Self-consistent OG solution: the case of the Crab pulsar |
|
|
125 | (1) |
|
3.1 Gap geometry and acceleration electric field |
|
|
125 | (1) |
|
3.2 Photon mapping result and radiation spectrum |
|
|
125 | (1) |
|
4 Slot-gap model: the case of the Crab pulsar |
|
|
126 | (7) |
|
4.1 Formation of a slot gap in the polar-cap region |
|
|
127 | (2) |
|
4.2 Lower-altitude slot-gap solution |
|
|
129 | (1) |
|
4.3 Higher-altitude slot-gap model |
|
|
130 | (3) |
|
|
133 | (6) |
|
|
134 | (5) |
|
Current Models of Pulsar Magnetospheres |
|
|
139 | (20) |
|
|
|
139 | (1) |
|
2 Plasma supply and charge-separated models |
|
|
140 | (2) |
|
|
142 | (7) |
|
4 Implications of the magnetospheric solutions |
|
|
149 | (10) |
|
4.1 Consequences for spin down |
|
|
149 | (1) |
|
|
150 | (3) |
|
4.3 Reconnection and time-dependence |
|
|
153 | (1) |
|
4.4 Current structure and origin |
|
|
154 | (1) |
|
4.5 Differential rotation |
|
|
155 | (1) |
|
|
156 | (1) |
|
|
156 | (3) |
|
Modeling of γ-ray Pulsar Light Curves from Force-Free Magnetosphere |
|
|
159 | (6) |
|
|
|
|
163 | (2) |
|
A Tale of Two Current Sheets |
|
|
165 | (16) |
|
|
|
165 | (11) |
|
|
176 | (5) |
|
|
179 | (2) |
|
The high-energy emission from the pulsar striped wind |
|
|
181 | (4) |
|
|
|
181 | (1) |
|
|
182 | (1) |
|
3 Application to γ-ray pulsars |
|
|
183 | (2) |
|
|
184 | (1) |
|
Gamma-rays from millisecond pulsars in Globular Clusters |
|
|
185 | (22) |
|
|
|
185 | (1) |
|
2 The stellar content of Globular Clusters |
|
|
186 | (1) |
|
3 Compact objects within Globular Clusters |
|
|
187 | (2) |
|
|
187 | (1) |
|
3.2 Cataclysmic Variables and LMXBs |
|
|
188 | (1) |
|
3.3 Intermediate mass black holes? |
|
|
188 | (1) |
|
4 Non-thermal emission from Globular Clusters |
|
|
189 | (2) |
|
|
189 | (1) |
|
|
189 | (2) |
|
5 Models for gamma-ray emission |
|
|
191 | (9) |
|
5.1 Interpretation of the observed GeV γ-ray emission |
|
|
192 | (1) |
|
5.2 TeV γ-ray emission from MSP winds and shocks |
|
|
193 | (4) |
|
5.3 Constraints on the MSP population |
|
|
197 | (3) |
|
6 Gamma-rays from electrons injected from other sources? |
|
|
200 | (2) |
|
|
202 | (5) |
|
|
204 | (3) |
|
Modelling the Growing Population of γ-ray Millisecond Pulsars |
|
|
207 | (6) |
|
|
|
|
|
207 | (1) |
|
|
208 | (2) |
|
|
210 | (1) |
|
4 Discussion and Conclusions |
|
|
210 | (3) |
|
|
210 | (3) |
|
A Joint Radio Gamma-ray Variability Study of the Crab Pulsar |
|
|
213 | (6) |
|
|
|
|
213 | (1) |
|
|
214 | (1) |
|
|
214 | (1) |
|
3 Gamma-Ray Radio Correlation |
|
|
215 | (4) |
|
|
217 | (2) |
|
AGILE observations of PSR B1509-58 |
|
|
219 | (6) |
|
|
|
|
219 | (1) |
|
2 AGILE Observations, Data Analysis and Results |
|
|
220 | (1) |
|
|
221 | (4) |
|
|
223 | (2) |
|
Understanding the fundamental parameters of millisecond pulsars |
|
|
225 | (4) |
|
|
|
225 | (2) |
|
2 Observations and data analysis |
|
|
227 | (1) |
|
3 Discussion and conclusion |
|
|
227 | (2) |
|
|
228 | (1) |
|
Pulsars as gravitational wave detectors |
|
|
229 | (18) |
|
|
|
229 | (1) |
|
2 Using pulsars to search for GWs |
|
|
230 | (4) |
|
|
234 | (2) |
|
4 Potential sources of gravitational waves |
|
|
236 | (5) |
|
|
236 | (2) |
|
|
238 | (1) |
|
4.3 Stochastic background |
|
|
239 | (2) |
|
5 Accessing pulsar data sets |
|
|
241 | (1) |
|
|
241 | (1) |
|
|
242 | (5) |
|
|
242 | (5) |
|
Magnetar outbursts: an observational review |
|
|
247 | (28) |
|
|
|
|
247 | (1) |
|
|
248 | (2) |
|
3 General observational characteristics |
|
|
250 | (1) |
|
4 Multiband view of magnetars |
|
|
250 | (4) |
|
4.1 Radio emission of magnetars |
|
|
251 | (2) |
|
4.2 Optical and infrared emission of magnetars |
|
|
253 | (1) |
|
4.3 Soft X-ray emission of magnetars |
|
|
253 | (1) |
|
4.4 Hard X-ray emission of magnetars |
|
|
254 | (1) |
|
|
254 | (10) |
|
|
255 | (1) |
|
|
256 | (2) |
|
|
258 | (1) |
|
|
258 | (1) |
|
|
259 | (1) |
|
|
260 | (1) |
|
|
260 | (1) |
|
|
261 | (1) |
|
|
262 | (1) |
|
|
263 | (1) |
|
|
263 | (1) |
|
|
264 | (1) |
|
|
264 | (11) |
|
|
265 | (10) |
|
Wide-band X-ray Studies of Magnetars with Suzaku |
|
|
275 | (4) |
|
|
|
|
|
|
|
1 Suzaku Observations of Magnetars |
|
|
275 | (2) |
|
2 Spectral Evolution of Magnetars |
|
|
277 | (2) |
|
|
278 | (1) |
|
Bursts and Flares from Highly Magnetic Pulsars |
|
|
279 | (20) |
|
|
|
|
280 | (2) |
|
2 SGRs Giant Flares and their magnetic fields |
|
|
282 | (3) |
|
2.1 The Cavallo-Fabian-Rees Variability Limit |
|
|
284 | (1) |
|
3 SGRs Intermediate Flares in the Swift era |
|
|
285 | (14) |
|
3.1 The March 2006 Burst Storm of SGR 1900+14 |
|
|
287 | (6) |
|
3.2 Further Observations: the case of SGR 0501+4516 and 1E 1547.0-5408 |
|
|
293 | (4) |
|
|
297 | (2) |
|
Activated Magnetospheres of Magnetars |
|
|
299 | (24) |
|
|
|
299 | (2) |
|
2 Electrodynamics of untwisting |
|
|
301 | (5) |
|
2.1 Evolution equation for axisymmetric twist |
|
|
301 | (2) |
|
|
303 | (3) |
|
|
306 | (5) |
|
3.1 Magnetospheric activity or deep crustal heating? |
|
|
306 | (1) |
|
|
307 | (4) |
|
|
311 | (2) |
|
5 Plasma circulation in the magnetosphere |
|
|
313 | (4) |
|
6 Magnetospheric emission |
|
|
317 | (3) |
|
|
320 | (3) |
|
|
320 | (3) |
|
Suzaku Detection of Hard X-ray Emission in SGR 0501+4516 Short Burst Spectrum |
|
|
323 | (6) |
|
|
|
|
|
|
|
|
|
|
324 | (1) |
|
2 Hard X-ray Emission in Burst Spectra |
|
|
324 | (1) |
|
|
325 | (4) |
|
|
326 | (3) |
|
The magnetar emission in the IR band: the role of magnetospheric currents |
|
|
329 | (8) |
|
|
|
|
|
329 | (1) |
|
2 Pair production in the inner magnetosphere |
|
|
330 | (2) |
|
|
332 | (1) |
|
4 Discussion and Conclusion |
|
|
333 | (4) |
|
|
334 | (3) |
|
Double features in mean pulsar profiles and the nature of their radio emission |
|
|
337 | (4) |
|
|
|
1 Frequency dependence of the bifurcation angle |
|
|
337 | (2) |
|
|
339 | (2) |
|
|
340 | (1) |
|
Can the magnetic field of long-period X-ray pulsars be supercritical? |
|
|
341 | (4) |
|
|
|
|
341 | (2) |
|
|
343 | (2) |
|
|
344 | (1) |
|
X-ray emission from isolated neutron stars |
|
|
345 | (20) |
|
|
|
345 | (2) |
|
2 Origin of the X-ray emission in isolated neutron stars |
|
|
347 | (1) |
|
3 The X-ray Dim Isolated Neutron Stars |
|
|
348 | (3) |
|
4 Central Compact Objects in Supernova Remnants |
|
|
351 | (1) |
|
5 The Magnetar candidates: Anomalous X-ray Pulsars and Soft Gamma-ray Repeaters |
|
|
352 | (4) |
|
6 Rotating Radio Transients |
|
|
356 | (1) |
|
7 Rotation-powered pulsars with high magnetic field |
|
|
357 | (1) |
|
|
358 | (7) |
|
|
359 | (6) |
|
X-ray thermal radiation from hot polar cap in pulsars |
|
|
365 | (4) |
|
|
|
|
365 | (1) |
|
|
366 | (1) |
|
|
367 | (2) |
|
|
368 | (1) |
|
Radio polarization of RRAT J1819-1458 |
|
|
369 | (4) |
|
|
|
369 | (1) |
|
2 Polarization characteristics |
|
|
370 | (2) |
|
3 Discussion and conclusions |
|
|
372 | (1) |
|
|
372 | (1) |
|
Multiwavelength Observations of Pulsar Wind Nebulae |
|
|
373 | (20) |
|
|
|
373 | (1) |
|
2 Dynamical Evolution of PWNc |
|
|
374 | (3) |
|
3 Spectral Evolution of PWNc |
|
|
377 | (2) |
|
|
379 | (11) |
|
|
379 | (3) |
|
|
382 | (2) |
|
|
384 | (3) |
|
|
387 | (3) |
|
|
390 | (3) |
|
|
390 | (3) |
|
Multi-wavelength Observations of Composite Supernova Remnants |
|
|
393 | (6) |
|
|
|
393 | (1) |
|
2 G54.1+0.3: Expansion into SN Ejecta |
|
|
394 | (1) |
|
3 G327.1-1.1: Interaction with the Reverse Shock |
|
|
395 | (1) |
|
|
396 | (3) |
|
|
396 | (3) |
|
Fermi-LAT Results on Pulsar Wind Nebulae after 1.5 year of Observations |
|
|
399 | (14) |
|
|
|
|
399 | (1) |
|
|
400 | (2) |
|
|
402 | (2) |
|
|
404 | (1) |
|
5 PSR J1907+0602 and its TeV PWN |
|
|
404 | (1) |
|
|
405 | (2) |
|
7 A plausible pulsar wind nebula candidate powered by PSR J1023-5746 |
|
|
407 | (1) |
|
|
408 | (5) |
|
|
410 | (3) |
|
Pulsar Wind Nebulae: The GeV to TeV Connection |
|
|
413 | (18) |
|
|
|
413 | (1) |
|
2 The Crab Nebula in γ-rays |
|
|
414 | (3) |
|
2.1 The acceleration limit for electrons in the Crab Nebula |
|
|
414 | (2) |
|
2.2 The inverse Compton spectrum of the Crab Nebula - towards the spectral tail |
|
|
416 | (1) |
|
3 Accelerated PWN Spectra: Observations of the Cooling Effect |
|
|
417 | (2) |
|
4 A Single Spectral Component for the GeV to TeV Emission from the PWN of PSR B1509-58 |
|
|
419 | (2) |
|
5 Calorimetric GeV emission from PWN |
|
|
421 | (1) |
|
6 Discontinuous GeV and TeV Emission from Two-Component PWN |
|
|
422 | (2) |
|
6.1 Two-Component Extended Emission from the Vela X PWN |
|
|
422 | (1) |
|
6.2 Radio and X-Ray Torii of Vela X near the Termination Shock: Discontinuous Spectra |
|
|
422 | (2) |
|
7 HESS J1640-465: Another Two-Component Candidate? |
|
|
424 | (2) |
|
|
426 | (5) |
|
|
428 | (3) |
|
Extended hard X-ray emission from Vela X |
|
|
431 | (4) |
|
|
|
|
|
|
|
|
|
|
431 | (1) |
|
2 INTEGRAL identification of extended hard X-ray emission |
|
|
432 | (2) |
|
3 Combined IBIS/ISGRI and Suzaku/XIS spectral analysis |
|
|
434 | (1) |
|
|
434 | (1) |
|
|
434 | (1) |
|
Cherenkov Telescopes Results on Pulsar Wind Nebulae and Pulsars |
|
|
435 | (18) |
|
|
|
435 | (4) |
|
|
439 | (1) |
|
3 Observations of pulsars with IACTs |
|
|
440 | (1) |
|
4 Observations of PWNe with Cherenkov telescopes |
|
|
441 | (10) |
|
4.1 Young/Composite Pulsar Wind Nebula |
|
|
444 | (3) |
|
4.2 "Relic" Pulsar Wind Nebula |
|
|
447 | (2) |
|
4.3 Other PWNe candidates |
|
|
449 | (2) |
|
|
451 | (2) |
|
|
451 | (2) |
|
Lepton Acceleration in Pulsar Wind Nebulae |
|
|
453 | (20) |
|
|
|
453 | (2) |
|
2 Lepton Acceleration at Relativistic Shocks |
|
|
455 | (9) |
|
2.1 The Monte Carlo Method |
|
|
457 | (1) |
|
2.2 Results for Relativistic Shock Acceleration |
|
|
458 | (6) |
|
3 The Quasi-Perpendicular Pulsar Wind Termination Shock |
|
|
464 | (2) |
|
4 Connecting to PWN Observations |
|
|
466 | (4) |
|
|
470 | (3) |
|
|
470 | (3) |
|
MHD models of Pulsar Wind Nebulae |
|
|
473 | (18) |
|
|
|
473 | (2) |
|
2 Jet-Torus structure and Inner flow properties |
|
|
475 | (7) |
|
|
480 | (1) |
|
|
481 | (1) |
|
|
482 | (4) |
|
|
486 | (5) |
|
|
488 | (3) |
|
TeV Gamma Ray Survey on the Direction of fermi-LAT Pulsars with the Tibet Air Shower Array |
|
|
491 | (6) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
493 | (1) |
|
|
493 | (4) |
|
|
494 | (3) |
|
Fermi results on γ-ray binaries |
|
|
497 | (16) |
|
|
|
|
|
498 | (1) |
|
|
498 | (4) |
|
2.1 The original discovery, and further TeV observations: flux, spectrum, periodicity |
|
|
498 | (1) |
|
2.2 TeV and X-ray simultaneous observations |
|
|
499 | (1) |
|
2.3 The Fermi results on LSI +61°303 |
|
|
500 | (2) |
|
|
502 | (1) |
|
3.1 The original discovery, and further TeV observations: flux, spectrum, periodicity |
|
|
502 | (1) |
|
3.2 The Fermi results on LS 5039 |
|
|
503 | (1) |
|
|
503 | (4) |
|
4.1 Historical observations at high energies |
|
|
503 | (1) |
|
4.2 The Fermi results on Cygnus X-3 |
|
|
504 | (3) |
|
|
507 | (2) |
|
5.1 Reports of high energy and very high energy emission |
|
|
508 | (1) |
|
|
509 | (4) |
|
|
510 | (3) |
|
Cherenkov Telescope results on gamma-ray binaries |
|
|
513 | (18) |
|
|
|
513 | (1) |
|
2 Detected in VHE: PSR B1259-63, LS 5039 and LS I+6T303 |
|
|
514 | (5) |
|
|
514 | (1) |
|
|
515 | (2) |
|
|
517 | (2) |
|
3 Uncertain VHE binaries: Cyg X-1 and HESS J0632+057 |
|
|
519 | (3) |
|
|
519 | (2) |
|
|
521 | (1) |
|
4 Searches for other VHE binaries |
|
|
522 | (4) |
|
|
523 | (3) |
|
|
526 | (5) |
|
|
527 | (4) |
|
γ-ray binaries as non-accreting pulsar systems |
|
|
531 | (20) |
|
|
|
531 | (1) |
|
2 Why is a non-accreting pulsar system a tenable alternative? |
|
|
532 | (6) |
|
3 Caveats in the search for X-ray spectral lines |
|
|
538 | (2) |
|
4 Caveats in the search for pulsations |
|
|
540 | (2) |
|
5 Notes on the theoretical models based on pulsar systems |
|
|
542 | (5) |
|
5.1 A perspective on the GeV cutoffs of LS I +61°303 and LS 5039 |
|
|
543 | (4) |
|
|
547 | (4) |
|
|
548 | (3) |
|
Relativistic motion and beamed radiation in gamma-ray binaries |
|
|
551 | (4) |
|
|
|
|
|
551 | (1) |
|
|
552 | (1) |
|
3 Doppler-boosted emission in LS 5039 and LS I +61 303 |
|
|
552 | (2) |
|
|
554 | (1) |
|
|
554 | (1) |
|
A leptonic One-Zone model of the X-Ray/VHE correlated emission in LS I +61 303 |
|
|
555 | (4) |
|
|
|
|
|
555 | (1) |
|
2 Model description and results |
|
|
556 | (1) |
|
|
557 | (2) |
|
|
558 | (1) |
|
New Optical Results on γ-ray Binaries |
|
|
559 | (4) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
559 | (1) |
|
2 Revised Orbital Solution in LS 5039 |
|
|
560 | (1) |
|
3 Probing Binarity in MWC 148 |
|
|
561 | (2) |
|
|
562 | (1) |
|
The International X-ray Observatory and other X-ray missions, expectations for pulsar physics |
|
|
563 | (22) |
|
|
|
|
563 | (2) |
|
|
565 | (5) |
|
2.1 Overview of X-ray Missions |
|
|
565 | (1) |
|
2.2 The Small Satellite Missions in 2010s |
|
|
566 | (2) |
|
|
568 | (1) |
|
2.4 The International X-ray Observatory |
|
|
569 | (1) |
|
3 Pulsar Sciences with Future X-ray Missions |
|
|
570 | (10) |
|
3.1 General relativity under strong gravity |
|
|
570 | (2) |
|
3.2 Equation of State in neutron stars |
|
|
572 | (1) |
|
3.3 Plasma physics under a strong magnetic field |
|
|
573 | (2) |
|
3.4 Emission mechanism from Magnetars |
|
|
575 | (2) |
|
3.5 Diversity of Pulsar systems: white dwarf pulsars |
|
|
577 | (3) |
|
4 Synergy with other wavelength observatories |
|
|
580 | (5) |
|
|
581 | (4) |
|
|
585 | (26) |
|
|
|
1 Neutron Stars Science with X-ray Polarimetry |
|
|
585 | (2) |
|
2 Fundamental Parameters of X-ray Polarimetry |
|
|
587 | (1) |
|
3 Classical Techniques and Observational Status |
|
|
588 | (7) |
|
|
588 | (3) |
|
3.2 Thompson/Compton Polarimeters |
|
|
591 | (3) |
|
3.3 Observational results |
|
|
594 | (1) |
|
4 A jump in sensitivity: the focal plane photoelectric Polarimeters for soft X-rays |
|
|
595 | (5) |
|
4.1 The Gas Pixel Detector (GPD) solution |
|
|
597 | (1) |
|
4.2 The Time Projection Chamber (TPC) Polarimeter solution |
|
|
598 | (2) |
|
5 Observational Prospects |
|
|
600 | (7) |
|
5.1 Gravity and Extreme Magnetism SMEX (GEMS) |
|
|
600 | (1) |
|
5.2 New Hard X-ray Mission (NHXM) |
|
|
601 | (3) |
|
5.3 International X-ray Observatory (IXO) |
|
|
604 | (3) |
|
|
607 | (4) |
|
|
607 | (4) |
|
New results on high energy cosmic ray electrons observed with Fermi LAT |
|
|
611 | (12) |
|
|
|
611 | (1) |
|
2 Detection of electrons by LAT |
|
|
612 | (5) |
|
|
617 | (3) |
|
|
620 | (1) |
|
|
620 | (3) |
|
|
620 | (3) |
|
Positrons From pulsar winds |
|
|
623 | |
|
|
|
|
624 | (2) |
|
2 A pulsar wind inside a supernova remnant |
|
|
626 | (3) |
|
3 A pulsar wind escaping the parent supernova remnant: bow shock nebulae |
|
|
629 | (2) |
|
4 The positron flux from pulsars |
|
|
631 | (6) |
|
|
637 | |
|
|
640 | |