Atjaunināt sīkdatņu piekrišanu

E-grāmata: High-Field EPR Spectroscopy on Proteins and their Model Systems: Characterization of Transient Paramagnetic States

(Max Planck Institute, Germany), (Free University of Berlin, Germany)
  • Formāts: 392 pages
  • Izdošanas datums: 19-Dec-2008
  • Izdevniecība: Royal Society of Chemistry
  • Valoda: eng
  • ISBN-13: 9781847559272
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 768,21 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 392 pages
  • Izdošanas datums: 19-Dec-2008
  • Izdevniecība: Royal Society of Chemistry
  • Valoda: eng
  • ISBN-13: 9781847559272
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

A comprehensive overview of experimental techniques in high-field EPR spectroscopy and their applications in biology and biochemistry.


Understanding the major factors determining the specificity of transmembrane transfer processes in proteins is currently a hot topic in molecular bio-science. Advanced electron paramagnetic resonance (EPR) at high magnetic fields is a powerful technique for characterizing the transient states of proteins in action on biologically relevant time scales. This book offers a comprehensive overview of experimental techniques in, and paradigmatic examples of, the application of high-field EPR spectroscopy in biology and chemistry. It focuses on the use of the technique in conjunction with site-specific mutation strategies and advanced quantum-chemical computation methods to reveal protein structure and dynamics. This yields new insights into biological processes at the atomic and molecular level. The theoretical and instrumental background of high-field EPR is described and examples of paradigmatic protein systems, such as photosynthesis, are discussed in the light of recent investigations. Aspects of structure-dynamics-function relations that are revealed by studying site-specific mutants are highlighted, thereby combining high-field EPR with genetic engineering techniques. The information obtained complements that obtained from protein crystallography, solid-state NMR, infrared and optical spectroscopy. The book documents both background knowledge and results of the latest research in the field. Unique features include comparisons of information content of EPR, ENDOR, Triple resonance, ESEEM and PELDOR taken at different microwave frequencies and magnetic fields. Coherent treatment of the subject by the leading Berlin high-field EPR laboratory covers the theoretical background as well as state-of-art research both in terms of instrumentation and application to biological systems. Finally, the book provides an outlook to future developments and references for further reading. High-Field EPR Spectroscopy on Proteins in Action is essential reading for scientists, professionals, academics and post graduate students working in this field.
Summary xiii
Acknowledgements xv
Chapter 1 Introduction
1.1 Why EPR at High Magnetic Fields?
3
1.2 NMR versus EPR
7
1.3 From Basic to Advanced Multifrequency EPR, a Chronological Account
9
References
17
Chapter 2 Principles and Illustrative Examples of High-Field/HighFrequency EPR
2.1 Spin Hamiltonians and EPR Experiments at High Magnetic Fields
23
2.1.1 Organic Radicals and Low-Spin Transition-Metal Ions (S = 1/2)
23
2.1.2 Triplet States and High-Spin Transition-Metal Ions (S greater than 1/2)
33
2.2 High-Field EPR, ENDOR, TRIPLE, ESEEM, PELDOR and RIDME
35
2.2.1 ENDOR and TRIPLE Hyperfine Spectroscopy
35
2.2.1.1 Liquid-Solution Steady-State ENDOR and TRIPLE
37
2.2.1.2 Liquid-Solution Transient EPR and ENDOR in Photochemistry
53
2.2.1.3 Solid-State Pulse ENDOR and TRIPLE
73
2.2.1.4 ESEEM Hyperfine Spectroscopy
79
2.2.2 Electron–Electron Dipolar Spectroscopy
93
2.2.2.1 PELDOR
97
2.2.2.2 RIDME
100
2.2.2.3 High-Field RIDME and PELDOR on Nitroxide Radical Pairs
102
References
113
Chapter 3 Instrumentation
3.1 Experimental Techniques
125
3.1.1 Continuous-Wave EPR (cw EPR)
125
3.1.2 Time-Resolved EPR (TREPR)
126
3.1.3 Pulse EPR
129
3.2 Historical Overview of High-Field/High-Frequency EPR Spectrometers
131
3.2.1 First Generation
133
3.2.2 Second Generation
134
3.3 Technical Aspects of High-Field/High-Frequency EPR
137
3.3.1 Sensitivity Considerations
137
3.3.2 Detection Schemes
138
3.3.3 Microwave Sources
143
3.3.4 Resonators
145
3.3.4.1 Single-Mode Cavities
146
3.3.4.2 Fabry-Perot Resonators
148
3.3.4.3 Loop-Gap Resonators
152
3.3.4.4 Dielectric Resonators
153
3.3.4.5 Nonresonant Systems
154
3.3.5 Microwave Transmission Lines
156
3.3.6 Magnet Systems
158
3.4 High-Field Multipurpose Spectrometers Built at FU Berlin
160
3.4.1 The 95-GHz Spectrometer
160
3.4.1.1 Microwave Bridge Design
162
3.4.1.2 Magnet and Cryostat
163
3.4.1.3 Probeheads
164
3.4.1.4 EPR and ENDOR Performance
169
3.4.1.5 Field-Jump PELDOR
170
3.4.1.6 Dual-Frequency PELDOR
171
3.4.2 The 360-GHz Spectrometer
172
3.4.2.1 Quasioptical Microwave Propagation
172
3.4.2.2 Microwave-Bridge Design
174
3.4.2.3 Quasioptical Components
176
3.4.2.4 Induction-Mode Operation
176
3.4.2.5 Magnet and Cryostat
178
3.4.2.6 Probeheads
178
3.4.2.7 ENDOR
179
3.4.2.8 Transient EPR Bridge with Reference Arm
180
3.4.2.9 Pulsed Orotron Source
182
References
186
Chapter 4 Computational Methods for Data Interpretation
References
203
Chapter 5 Applications of High-Field EPR on Selected Proteins and their Model Systems
5.1 Introduction
206
5.2 Nonoxygenic Photosynthesis
213
5.2.1 Multifrequency EPR on Bacterial Photosynthetic Reaction Centers (RCs)
217
5.2.1.1 X-Band EPR and ENDOR Experiments
219
5.2.1.2 95-GHz EPR on Primary Donor Cations P·+ in Single-Crystal RCs
223
5.2.1.3 360-GHz EPR on Primary Donor Cations P·+ in Mutant RCs
228
5.2.1.4 Results of g-tensor Computations of P·+
232
5.2.1.5 95-GHz EPR and ENDOR on the Acceptors Q·-A and Q·-B
234
5.2.1.6 95-GHz ESE-Detected EPR on the Spin-Correlated Radical Pair P·+Q·-A
248
5.2.1.7 95-GHz RIDME and PELDOR on the Spin-Correlated Radical Pair P·+Q·-A
250
5.2.1.8 Multifrequency EPR on Primary Donor Triplet States in RCs
268
5.2.2 Multifrequency EPR on Bacteriorhodopsin (BR)
272
5.2.2.1 Site-Directed Nitroxide Spin Labelling
274
5.2.2.2 Hydrophobic Barrier of the BR Proton-Transfer Channel
275
5.2.2.3 Modelling of Solute–Solvent Interactions
278
5.2.2.4 Conformational changes during the BR photocycle
281
5.3 Oxygenic Photosynthesis
283
5.3.1 Multifrequency EPR on Doublet States in Photosystem I (PS I)
284
5.3.2 Multifrequency EPR on Doublet States in Photosystem II (PS II)
288
5.4 Photoinduced Electron Transfer in Biomimetic Donor–Acceptor Model Systems
290
5.4.1 Introduction
290
5.4.2 Covalently Linked Porphyrin–Quinone Dyad and Triad Model Systems
294
5.4.3 Base-Paired Porphyrin–Quinone and Porphyrin–Dinitrobenzene Complexes
308
5.5 DNA Repair Photolyases
314
5.5.1 Introduction
314
5.5.2 High-Field EPR and ENDOR Experiments
319
5.6 Colicin A Bacterial Toxin
323
5.6.1 Introduction
323
5.6.2 Models of Transmembrane Ion-Channel Formation
326
5.6.3 95-GHz EPR Studies of Membrane Insertion
327
References
330
Chapter 6 Conclusions and Perspectives
References
364
Subject Index 366
Klaus Mobius has worked in the field of EPR spectroscopy for more than 40 years. During the last 15 years, his research has focussed on high-field EPR and related techniques on biochemical systems. Anton Savitsky has worked in the field of EPR spectroscopy for over a decade. Since 1998, his research has focussed on high-field EPR instrumentation development and application to biochemical systems.