Atjaunināt sīkdatņu piekrišanu

High-operating-temperature Infrared Photodetectors illustrated Edition [Mīkstie vāki]

  • Formāts: Paperback / softback, 240 pages, weight: 456 g, Illustrations
  • Sērija : Press Monographs
  • Izdošanas datums: 14-May-2007
  • Izdevniecība: SPIE Press
  • ISBN-10: 0819465356
  • ISBN-13: 9780819465351
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 87,23 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 240 pages, weight: 456 g, Illustrations
  • Sērija : Press Monographs
  • Izdošanas datums: 14-May-2007
  • Izdevniecība: SPIE Press
  • ISBN-10: 0819465356
  • ISBN-13: 9780819465351
Citas grāmatas par šo tēmu:
Cryogenic cooling has always been a challenging part of sensitive infrared (IR) systems, adding weight, size, cost, power consumption and inconvenience to what is otherwise an efficient and efficacious design. Concentrating on the latest developments for efficiently cooling detectors that operate in the middle- and long-wavelength IR spectrum, practitioner Piotrowski and Rogalski (applied physics, Military U, of Technology, Warsaw) describe innovations in the cooling of many types of IR photodetectors with emphasis on HgCdTe alloy based detectors. They describe the fundamental performance limitations of IR photodetectors, materials used for and the operation of intrinsic photodetectors, and applications to a range of devices including photoconductors, photoelectromagnetic and Denber effect detectors and photodiodes. They include commentary on the innovations to date and a summary of what we can expect shortly. Although written primarily for graduate students, this can also serve as a reference for practitioners. Annotation ©2007 Book News, Inc., Portland, OR (booknews.com)
Acronyms and Abbreviations ix
Preface xi
Introduction
1(14)
General Remarks
1(4)
Detector Figures of Merit
5(3)
Responsivity
5(1)
Noise equivalent power
6(1)
Detectivity
6(2)
Detectivity Requirements for Thermal Imagers
8(2)
Cooling of IR Detectors
10(5)
Cryogenic dewars
12(1)
Joule-Thompson coolers
12(1)
Stirling cycle coolers
12(1)
Peltier coolers
13(1)
References
13(2)
Fundamental Performance Limitations of Infrared Photodetectors
15(18)
Infrared Photon Detector Classifications
15(1)
Theoretical Model
16(5)
Optical generation noise
18(1)
Noise due to optical signal
18(1)
Noise due to background radiation
18(2)
Internal radiative generation
20(1)
Thermal generation and recombination noise
21(1)
Optimum Thickness of a Detector
21(2)
Detector Material Figure of Merit
23(1)
Reducing Device Volume to Enhance Performance
24(9)
Enhancing absorption
24(1)
Increasing the apparent ``optical'' area of a detector compared to its physical area
25(4)
References
29(4)
Materials Used for Intrinsic Photodetectors
33(42)
Semiconductors for Intrinsic Photodetectors
34(1)
Hg1-xCdx Te Ternary Alloys
35(12)
Band structure and electrical properties
35(1)
Band structure
35(1)
Intrinsic concentration
36(1)
Mobilities
37(1)
Defects and impurities
38(1)
Native defects
38(2)
Dopants
40(1)
Growth of bulk crystals and epilayers
40(1)
Phase diagrams
41(1)
Bulk crystals
42(1)
Epitaxy
43(4)
Hg-based Alternatives to HgCdTe
47(5)
Crystal growth
48(1)
Physical properties
49(3)
InAs/Ga1-xInxSb Type II Superlattices
52(3)
Novel Sb-Based Materials
55(4)
InAsSb
55(2)
InTlSb and InTIP
57(1)
InSbBi
58(1)
InSbN
58(1)
Lead Salts
59(16)
Physical properties
60(2)
Deposition of polycrystaline PbS and PbSe films
62(1)
References
63(12)
Intrinsic Photodetectors
75(24)
Optical Absorption
75(5)
Thermal Generation-Recombination Processes
80(5)
Shockley-Read processes
81(1)
Internal radiative processes
82(1)
Auger processes
83(2)
Auger-Dominated Performance
85(6)
Equilibrium devices
85(2)
Nonequilibrium devices
87(4)
Modeling of High-Temperature Photodetectors
91(8)
References
94(5)
Hg1-xCdxTe Photoconductors
99(30)
Simplified Model of Equilibrium Mode Photoconductors
99(7)
High-frequency operation of photoconductors
102(1)
10.6-μm Hg1-xCdxTe photoconductor operating at 200-300 K
103(3)
Excluded Photoconductors
106(3)
Practical Photoconductors
109(10)
Technology of Hg1-xCdxTe photoconductors
109(2)
Practical excluded photoconductors
111(1)
Optically immersed photoconductors
112(2)
Detector housing
114(1)
Measured performance
115(1)
Near room temperature devices
115(2)
Low-temperature devices
117(1)
Excluded photoconductors
118(1)
Sprite Detectors
119(10)
References
123(6)
Hg1-xCdxTe Photodiodes
129(50)
Theoretical Design of Hg1-xCdxTe Photodiodes
129(19)
Photocurrent and dark current of photodiodes
129(1)
Structures of Hg1-xCdxTe photodiodes
130(7)
Current-voltage characteristics of photodiodes
137(8)
Quantum efficiency issues of high-temperature photodiodes
145(2)
Frequency response of Hg1-xCdxTe photodiodes
147(1)
Technology of Hg1-xCdxTe Photodiodes
148(5)
Basic configurations of photodiodes
148(2)
Junction formation
150(1)
Hg in-diffusion
150(1)
Ion implantation
150(1)
Ion milling
151(1)
Reactive ion etching
151(1)
Doping during growth
151(1)
Other techniques
152(1)
Passivation
152(1)
Contact metallization
153(1)
Practical Photodiodes
153(26)
SWIR photodiodes
153(1)
MWIR photodiodes
153(5)
LWIR photodiodes
158(4)
Practical stacked multiple-cell devices
162(1)
Auger-suppressed photodiodes
163(6)
References
169(10)
Photoelectromagnetic, Magnetoconcentration, and Dember IR Detectors
179(18)
PEM Detectors
179(8)
PEM effect
179(1)
Transport equations in a magnetic field
180(1)
Lile solution
181(4)
Practical HgCdTe PEM detectors
185(1)
Fabrication
185(1)
Measured performance
186(1)
Magnetoconcentration Detectors
187(3)
Dember Detectors
190(7)
References
194(3)
Lead Salt Photodetectors
197(14)
PbS and PbSe Photoconductors
198(6)
Fabrication
198(2)
Performance
200(4)
Lead Salt Photovoltaic Detectors
204(7)
References
208(3)
Alternative Uncooled Long-Wavelength IR Photodetectors
211(22)
HgZnTe and HgMnTe Detectors
211(3)
III-V Detectors
214(6)
InAs/Ga1-xInxSb Type-II Superlattice Detectors
220(2)
Thermal Detectors
222(11)
References
228(5)
Final Remarks
233(4)
Summary of Progress to Date
233(1)
Directions for Future Development
233(4)
References
235(2)
Index 237