Atjaunināt sīkdatņu piekrišanu

E-grāmata: High Resolution Electronic Spectroscopy of Small Molecules

(Emeritus Professor, The University of Strathclyde, Scotland), (University of Reims Champagne-Ardenne, France)
  • Formāts: 320 pages
  • Izdošanas datums: 02-Aug-2017
  • Izdevniecība: CRC Press Inc
  • Valoda: eng
  • ISBN-13: 9781315355504
  • Formāts - EPUB+DRM
  • Cena: 57,60 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 320 pages
  • Izdošanas datums: 02-Aug-2017
  • Izdevniecība: CRC Press Inc
  • Valoda: eng
  • ISBN-13: 9781315355504

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Over recent years electronic spectroscopy has developed significantly, with key applications in atmospheric chemistry, astrophysics and astrochemistry. High Resolution Electronic Spectroscopy of Small Molecules explores both theoretical and experimental approaches to understanding the electronic spectra of small molecules, and explains how this information translates to practice.

Professors Geoffrey Duxbury and Alexander Alijah present the links between spectroscopy and photochemistry, and discuss theoretical treatments of the interaction between different electronic states. They provide a thorough discussion of experimental techniques, and explore practical applications.

This book will be an indispensable reference for graduate students and researchers in physics and chemistry working on theoretical and practical aspects of electronic spectra, as well as atmospheric scientists, photochemists, kineticists and professional spectroscopists.

Recenzijas

"Another informative text from a world renowned spectroscopist; anyone familiar with Duxburys work will not be disappointed with High Resolution Electronic Spectroscopy of Small Molecules. After starting with some familiar principles, the introduction leads you gently into the more complex axioms that follow. With a concise yet in-depth walk through the Renner-Teller effect, the authors have grouped together related works and presented them in an eloquent fashion that is a pleasure to read. With this basis, the following chapters pique the readers interest and culminate in space borne measurements - giving readers the drive to increase their knowledge and push for further research. In short, this book would easily grace the bookshelves of anyone with an interest in spectroscopy and would be the perfect partner to Duxburys previous work." Dr David Wilson, Research Scientist, University of Strathclyde, Glasgow

Chapter 1 Introduction
1(36)
1.1 Historical Development Of Electronic Spectroscopy
1(1)
1.2 High-Resolution Laser Spectroscopy
2(29)
1.2.1 Introduction
2(1)
1.2.2 Principles of Sub-Doppler Spectroscopy
3(7)
1.2.3 Experimental Techniques
10(10)
1.2.4 Stark Spectroscopy of Small Molecules
20(4)
1.2.5 Studies of Semistable Molecules
24(3)
1.2.6 Spectroscopic Studies of Free Radicals and Molecular Ions
27(1)
1.2.7 Ultra-High-Resolution Spectroscopy
28(3)
1.2.8 Conclusion
31(1)
1.3 Bibliography
31(6)
Chapter 2 Linear and Bent Molecule Vibration-Rotation Hamiltonians for Open-Shell Molecules
37(14)
2.1 Linear Triatomic Molecules
38(4)
2.1.1 Basis Functions and Operators
38(1)
2.1.2 The Nonrotating Molecule
38(1)
2.1.3 The Rotating Molecule
39(3)
2.2 Bent Triatomic Molecules
42(6)
2.2.1 Basis Functions and Operators: The Nonrotating Molecule
42(1)
2.2.2 The Rotating Molecule: Singlet States
42(1)
2.2.3 The Rotating Molecule: Multiplet Electronic States
43(5)
2.3 Interpretation Of Spin-Rotation And Spin-Spin Constants
48(1)
2.3.1 Spin-Rotation Constants, εaa
48(1)
2.3.2 Spin-Spin Constants
49(1)
2.4 Bibliography
49(2)
Chapter 3 The Renner-Teller Effect
51(20)
3.1 Effective Bending Hamiltonians
51(8)
3.2 Inclusion Of Stretching Vibrations: The Stretch-Bender Approach
59(4)
3.3 Inclusion Of Overall Rotation
63(4)
3.4 Summary And Alternative Formulations
67(1)
3.5 Bibliography
68(3)
Chapter 4 First Row Dihydrides
71(52)
4.1 Introduction
71(9)
4.2 The Spectrum Of CH2, Δ State Splitting
80(24)
4.2.1 Theoretical Assignment of the Visible Spectrum of Singlet Methylene
80(3)
4.2.2 Determination of Radiative Lifetimes of CH2 (b1B1)
83(2)
4.2.3 The Group of Hai-Lung Dai, Department of Chemistry. The University of Pennsylvania
85(2)
4.2.4 Groups of Trevor J. Sears and Gregory E. Hall at Brookhaven National Laboratory. Long Island
87(2)
4.2.5 Improved Computational Methods
89(1)
4.2.6 New Experiments by the Groups of Hall and Sears
90(10)
4.2.7 The CH2 b1B1 - a1 A1 Band Origin at 1.20 μm
100(4)
4.3 The Spectrum Of NH2, II State Splitting
104(14)
4.3.1 Spectrum obtained by Vervloet and colleagues at Lille University
105(1)
4.3.2 Rotational Spectrum of the NH2, NHD, and ND2 Radicals Observed by Morino and Kamaguchi
106(1)
4.3.3 Spectrum Obtained by the Leone Group at JILA
106(4)
4.3.4 Stretch-Bender and Spin-Orbit Calculations
110(1)
4.3.5 Photodissociation Spectra of ND3 and ND2H Analysed by Duxbury and Reid
110(8)
4.4 Bibliography
118(5)
Chapter 5 Second Row Dihydrides
123(56)
5.1 The Spectrum Of SIH2
123(46)
5.1.1 Introduction
123(4)
5.1.2 Laser-Excited Fluorescence Detection of SiH2
127(11)
5.1.3 LRAFKS (Laser Resonance Absorption Flash Kinetic Spectroscopy) Apparatus
138(1)
5.1.4 Role of Silylene in the Pyrolysis of Silane and Organosilanes
139(4)
5.1.5 Measurement of SiH2 Densities in an RF-Discharge Silane Plasma Used In the Chemical Vapor Deposition of Hydrogenated Amorphous Silicon Film
143(3)
5.1.6 Jet Spectroscopy and Excited State Dynamics of SiH2 and SiD2
146(3)
5.1.7 Intracavity Laser Absorption Spectroscopy, ICLAS
149(6)
5.1.8 Measurement of SiH2 Density in a Discharge by Intracavity Laser Absorption Spectroscopy and CW Cavity Ring-Down Spectroscopy
155(2)
5.1.9 Renner-Teller and Spin-Orbit Interactions in SiH2
157(12)
5.2 The Spectrum Of PH2
169(7)
5.2.1 Effects of Orbital Angular Momentum in PH2 and PD2: Renner---Teller and Spin-Orbit Coupling
169(7)
5.3 Bibliography
176(3)
Chapter 6 Third Row Dihydrides
179(54)
6.1 The Spectrum Of GEH2
179(11)
6.1.1 Introduction
179(1)
6.1.2 The Excited State Dynamics of the A1B1 States of GeH2 and GeD2 Radicals
180(1)
6.1.3 Laser Optogalvanic and Jet Spectroscopy of GeH2
181(9)
6.2 The Spectrum Of ASH2
190(39)
6.2.1 Introduction
190(1)
6.2.2 The Analysis of a 2A1 -- 2B1 Electronic Band System of the AsH2 and AsD2 Radicals
190(5)
6.2.3 Effects of Spin-Orbit Coupling on the Spin-Rotation Interaction in the AsH2 Radical
195(1)
6.2.4 Diagrams for AsH2
195(3)
6.2.5 Laser Spectroscopy and Dynamics of the Jet-Cooled AsH2 Free Radical
198(6)
6.2.6 Absorption Spectra of AsH2 Radical In 435 --- 510 nm by Cavity Ringdown Spectroscopy
204(3)
6.2.7 Toward an Improved Understanding of the AsH2 Free Radical: Laser Spectroscopy. Ab Initio Calculations, and Normal Coordinate Analysis
207(8)
6.2.8 Renner---Teller and Spin-Orbit Coupling in AsH2
215(14)
6.3 Bibliography
229(4)
Chapter 7 Astrophysics: The Electronic Spectrum of H20+ and Its Relationships to the Observations Made from Herschel, an ESA Space Observatory
233(40)
7.1 Introduction: The Discovery Of H20+ By Lew And Heiber
234(1)
7.2 Observational Cometary Spectrum And Laboratory Spectrum
235(8)
7.2.1 Spectroscopic Investigations of Fragment. Species in the Coma
235(2)
7.2.2 Experimental Spectrum of H20+ Recorded by Hin Lew at NRC Canada
237(5)
7.2.3 Experimental Spectrum of H20+ Recorded by Das and Farley and by Huet et al.
242(1)
7.3 The Herschel Space Observatory
243(24)
7.3.1 The Herschel-Heterodyne Instrument for the Far-Infrared (HIFI)
243(5)
7.3.2 Detection of Interstellar Oxidaniumyl: Abundant H20+ Towards the Star-Forming Regions DR21, Sgr B2, and NGC 6334
248(5)
7.3.3 Interstellar OH+, H20+, and H30+ Along the Sight-Line to G10.6-0.4
253(2)
7.3.4 Detection of OH+ and H20+ Towards Orion KL
255(2)
7.3.5 Water Production In Comet 81P/Wild 2 as Determined by Herschel/HIFI
257(5)
7.3.6 A High-Resolution Line Survey of IRC +10216 with Herschel/HIFI -- First Results: Detection of Warm Silicon Dicarbide
262(5)
7.4 Bibliography
267(6)
Chapter 8 Appendix
273(24)
8.1 H20+ Spectroscopic Data From Lew
273(11)
8.2 D20+ Spectroscopic Data From Lew And Groleau
284(12)
8.3 Bibliography
296(1)
Index 297
Geoffrey Duxbury, Alexander Alijah