Atjaunināt sīkdatņu piekrišanu

E-grāmata: High Temperature Air Combustion: From Energy Conservation to Pollution Reduction

  • Formāts: 424 pages
  • Izdošanas datums: 03-Dec-2002
  • Izdevniecība: CRC Press Inc
  • ISBN-13: 9781420041033
  • Formāts - PDF+DRM
  • Cena: 181,83 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 424 pages
  • Izdošanas datums: 03-Dec-2002
  • Izdevniecība: CRC Press Inc
  • ISBN-13: 9781420041033

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Maximize efficiency and minimize pollution: the breakthrough technology of high temperature air combustion (HiTAC) holds the potential to overcome the limitations of conventional combustion and allow engineers to finally meet this long-standing imperative. Research has shown that HiTAC technology can provide simultaneous reduction of CO2 and nitric oxide emissions and reduce energy consumption for a specific process or requirement.

High Temperature Air Combustion: From Energy Conservation to Pollution Reduction provides the first comprehensive exposition of the principles and practice of HiTAC. With a careful balance of theory and practice, it reviews the historical background, clearly describes HiTAC combustion phenomena, and shows how to simulate and apply the technology for significant energy savings, reduced equipment size, and lower emissions. It offers design guidelines for high performance industrial furnaces, presents field trials of practical furnaces, and explores potential applications of HiTAC in other fields, including the conversion of solid waste fuels to cleaner fuels, stationary gas turbine engines, internal combustion engines, and other advanced energy-to-power conversion systems.

Developed through an intensive research project sponsored by the Japanese government, HiTAC now promises to revolutionize our paradigm for using all kinds of fossil, alternative, waste, and derived fuels for energy conversion and utilization in industry. This book is your opportunity to understand its principles, learn about the technology, and begin to use it to the benefit of your application, your company, and the environment.
Introduction
1(28)
Historical Background of High Temperature Air Combustion
1(5)
Environment and Energy Conservation
1(1)
Reduction of Pollutant Emissions and Energy Crisis
2(2)
Panorama of High Temperature Air Combustion Technology
4(2)
Innovation of High Temperature Air Combusion
6(23)
Fundamentals of Combustion
6(1)
Heat Recirculating Combustion
6(4)
Definition of High Temperature Air
10(1)
Heat Recirculation and Exhaust Gas Recirculation
10(3)
Principle of Combustion Control for CO2 and NOx Reduction
13(1)
Carbon Dioxide
13(2)
Nitric Oxides
15(2)
Heat Transfer in High Temperature Air Combustion
17(1)
Convection Heat Transfer of High Temperature Air Combustion
18(2)
Radiant Heat Transfer of High Temperature Air Combustion
20(1)
Effect of Wall as Wavelength Conversion Body in High Temperature Air Combustion
21(2)
Thermodynamics of High Temperature Air Combustion
23(5)
References
28(1)
Combustion Phenomena of High Temperature Air Combustion
29(142)
Introduction
29(1)
Flame Features
30(30)
Flame Stability
30(2)
Temperature Profiles
32(2)
Influence on NOx Emissions
34(1)
Thermal Field Behavior
34(1)
350 kW-Scale Combustion Test
34(1)
Cold Flow Model Test
34(2)
Temperature Profiles
36(2)
Flow Patterns
38(1)
Flame Structure, Radicals, and Species
39(1)
Experimental Furnace for Optical Measuring
39(1)
Combustion Conditions
39(3)
Optical Measurement Results
42(6)
Summary
48(1)
Flame with Heat and Combustion Products Recirculation
49(1)
Improved Heating Method
49(1)
Heat and Combustion Product Recirculation
49(1)
Heat Balance in the System
50(1)
Gross Heat Input
50(1)
Heat Transfer in Furnace
51(2)
Heat Output
53(1)
Equation Arrangement
53(1)
Calculation Results
53(1)
Effect of Gas Recirculation
53(1)
Heat and Gas Recirculation
54(3)
Thermal Efficiency
57(1)
Discussion
57(3)
Summary
60(1)
Fundamentals of Gaseous Fuel Flames
60(47)
Extinction Limit and Nox in Laminar Diffusion Flame
60(1)
Experimental Apparatus
61(1)
Velocity Field and Temperature Field
62(2)
Extinction and Re-ignition Temperatures of Laminar Diffusion Flame
64(2)
Distributions of Temperature and Concentrations of Species
66(2)
Effect of Flame Temperature on NOx Formation
68(1)
Relationship between Flame Temperature and the Critical Velocity Gradient
69(1)
Summary
70(1)
Burning Velocity
71(1)
Simulation Model
71(1)
Simulation Results and Discussion
72(1)
Preheated but Not Diluted Premixed Flames
72(1)
Preheated and Diluted Premixed Flames
73(1)
Fuel Flux
74(1)
No Formation
75(3)
Summary
78(1)
Mixing in Furnace
79(1)
Jet Mixing
79(4)
Unmixedness
83(2)
Well-Stirred Reactor
85(1)
Pollutant Formation
86(1)
Nitric Oxides
86(4)
Pollutant Formation and Emission
90(1)
Calculation Method
91(1)
Results and Discussion
91(1)
Ignition of Ø = 5 Mixture
91(7)
Ignition of Ø = 2 Mixture
98(2)
Summary
100(1)
Radiation
100(7)
Fundamentals of Liquid Fuel Flames
107(11)
Liquid Fuel Flame Characteristics and Stability
107(1)
Experimental Apparatus
107(1)
Spraying Device
107(1)
Combustion Device
108(1)
Spray Nozzle
108(1)
Experimental Method
109(1)
Air Preheating
109(2)
Spray Pressure
111(1)
Spraying Method
111(1)
Measurement of Flame
112(1)
Experimental Results
112(1)
Temperature of Blowout
112(1)
Flame Form and Flame Color
113(1)
Discussions
114(1)
Blowout of Flame
114(1)
Changes in Flame Form and Flame Color
115(2)
Spray Combustion in the High Temperature Preheated Diluted Air
117(1)
Summary
117(1)
Emissions in Liquid Fuel Flame
117(1)
Emissions on Liquid Fuel Combustion
117(1)
Fundamentals of Solid Fuel Flames
118(53)
Solid Fuel Flame Characteristics
118(3)
Combustion Process of Coal
121(1)
Properties of Coal
122(1)
Combustion Phenomena around Particles
123(3)
Combustion Phenomena inside a Particle
126(1)
Final Stage of Combustion
126(1)
Combustion Behavior of Coal at Synthetic Air Condition of High Temperature
127(3)
Summary
130(1)
Emissions in Solid Fuel Flames
130(1)
The Furnace Setup
131(2)
Fuel Properties (Natural Gas/Coal)
133(1)
Experimental Program
133(2)
In-Flame Measurements
135(1)
Heat and Mass Balance
136(1)
Gas Composition
136(2)
Temperature Measurements
138(1)
Velocity Measurements
139(2)
Burnout
141(1)
Solid Concentration
142(3)
Total Radiative Heat Flux
145(1)
Total Radiance
146(2)
Input/Output Measurements
148(2)
Coal Gun Position
150(2)
Coal Transport Air Mass Flow
152(3)
Precombustor NOx Level
155(1)
Summary
156(1)
Combustion Rate of Solid Carbon
157(1)
Combustion Field and Solid Carbon Specimens
158(1)
Experimental Results
159(1)
Combustion Rate in Room Temperature Airflow
159(1)
Combustion Rate in High Temperature Airflow
160(1)
Dynamic Analysis of Reactive Gas
161(1)
Combustion Rate
161(2)
Lower Limit of Oxygen Concentration
163(3)
Surface Temperature When a CO Flame Is Formed
166(1)
Combustion Rate in High Temperature Airflow
166(2)
Summary
168(1)
References
168(3)
Simulation Models for High Temperature Air Combustion
171(40)
Present State of Combustion Simulation in Furnaces
171(5)
Introduction
171(1)
Problems of Existing Combustion Models
172(1)
Arrhenius Type One-Step Global Reaction Model
172(1)
Mixing-Is-Reacted Model
173(1)
Eddy-Break-Up Model
174(2)
Problems in Temperature Calculation
176(1)
Combustion Model for High Temperature Air Combustion
176(14)
Characteristics of High Temperature Air Combustion
176(1)
Proposed Improvements
177(1)
Temperature Correction for Thermal Dissociation
178(4)
Reaction Model for High Temperature Air Combustion
182(1)
One-Step Global Reaction Model (Coffee)
182(1)
Four-Step Reaction Model (Jones and Lindstedt)
183(1)
Four-Step Reaction Model (Srivatsa)
184(1)
Compariso of Reaction Models
185(1)
Comparison of Flame Lifted Height by Different Reaction Models
186(2)
Comparison of Maximum Flame Temperature by Different Reaction Models
188(1)
Influence of Jet Velocity on Flame Lift Height
188(2)
Heat Transfer Model for High Temperature Air Combustion
190(7)
Heat Transfer Models
190(1)
Gray Model
190(2)
Weighted-Sum-of-Gray-Gases Model
192(2)
Nongray Models
194(1)
Radiative Heat Transfer Using Nongray Property of Radiation
195(2)
Examples of Practical Application
197(14)
Nitric Oxide Emission
198(1)
Thermal NO
198(1)
Prompt NO
199(1)
NO Reduction Mechanism (Reburning)
199(2)
Results and Discussion
201(1)
Transient Behavior of Furnaces
202(1)
Fluid Dynamics Model
202(1)
Radiation Heat Transfer Model
203(1)
Combustion Model
204(1)
Temperature Distribution during Fuel Changeover
205(1)
Comparison with Measured Temperatures by Suction Pyrometer
206(1)
Calculation on Wide Regenerative Furnace
207(1)
References
208(3)
Practical Combustion Methods Used in Industries
211(32)
Historical Transition of Industrial Furnace Technologies
211(19)
Energy Technologies Discussed at COP3
211(4)
Conventional Technologies of Energy Saving and Combustion Control for Industrial Furnaces
215(4)
Development of High Performance Industrial Furnaces
219(11)
Energy Conservation
230(5)
Basic Approach
230(1)
Effect of Improvement
230(5)
Pollution Reduction
235(8)
Basic Concept of Low NOx Combustion
235(2)
Results of the Test
237(1)
Pollution Reduction
238(3)
References
241(2)
Design Guidelines for High Performance industrial Furnaces
243(98)
Flowchart on General Design
243(20)
Design Concept of a High Performance Industrial Furnace
243(1)
Optimal Design for Furnace Length and Height
243(5)
Optimal Design for Other Furnace Configuration
248(1)
Pitch and Capacity of Burner
248(1)
Partition Wall
248(1)
Analytical Study of the Effect of a Partition Wall
249(2)
Lower Part of Furnace
251(11)
Furnace Width and Maximum Combustion Capacity
262(1)
Heat Balance and Performance Estimation with Simulation Program
263(17)
Outline of Simulation Program
263(2)
Basic Functions of the Simulator
265(1)
Estimation Method of Fuel Flow Volume and Exhaust Gas Temperatures Using Heat Balance
266(1)
Calculation Method of the Internal Temperature of the Semifinished Steel
266(3)
Calculation of Preheated Air Temperatures and Exhaust Gas Temperatures after Heat Exchange
269(1)
Radiation Heat from the Furnace Body and Heat Loss by Cooling Water
269(2)
Outlines of System Operation Method and Simulation Result
271(1)
Comparison of Calculation and Measurement
271(1)
Effect of Fuel Calorific Value on the Fuel Consumption of Reheating Furnaces
272(8)
Combustion Control System
280(16)
Basic Combustion Control System for Stable Operation
284(3)
Signal Processing Method
287(5)
Disturbance Suppression Control of Door Open and Close
292(3)
Future Trends of Combustion Control Technology Using High Temperature Air Combustion
295(1)
Application Design of High Performance Furnace
296(31)
Reheating Furnace
296(1)
Specifications and Performance of Facility
297(4)
Detailed Specifications of Facility
301(1)
Attachments
302(3)
Billet Reheating
305(2)
Heat Treatment Furnace
307(1)
Heat Balance and Evaluation Method of Furnace Performance
308(4)
Furnace Scale-Up for Commercial Production
312(2)
Test Design of Heat Treatment Furnace
314(6)
Melting Furnace
320(1)
Energy Savings and Exhaust Gas Regulation
320(2)
Size Reduction
322(2)
Method of Improving the Heat Transfer Efficiency inside the Furnace
324(1)
A Design Example of High Performance Aluminum-Melting Furnace
325(2)
Field Trials and Experiences Obtained through Field Test Demonstration Project
327(14)
Outline of the Field Test Project
328(1)
Applications for the Field Test in Fiscal Years 1998 and 1999
328(5)
Characteristic Aspects of the 1998 Field Test Project
333(1)
Effects of Modifications in the Field Tests
334(3)
Summary
337(2)
References
339(2)
Potential Applications of High Temperature Air Combustion Technology to Other Systems
341(20)
Introduction
341(3)
Combustion of Wastes and Solid Fuels
344(9)
Formation of Dioxins and Furans
350(1)
Refuse (or Waste) Derived Fuel
350(1)
Applied Technology for RDF
351(1)
Changes in the Calorific Value of Municipal Wastes
351(1)
Problems with Waste Derived Fuel Production and Combustion
352(1)
Burning of Coals and Lowgrade Coals
353(1)
Volatile Organic Compounds
354(1)
Ash Melting
354(1)
Compact Boilers
355(1)
Gas Turbine Combustion, Micro Gas Turbines, and Independent Power Production
355(1)
Paints, Oily Wastes, and Heavy Fuel Oils
356(1)
Fuel Cells
356(2)
Example 1
357(1)
High Temperature Air Combustion Using Pure Oxygen
358(1)
Summary
359(2)
References
359(2)
Appendix A Results of Investigations on the Current State of Japanese Industrial Furnaces 361(18)
A.1 Introduction
361(1)
A.2 Items and Methods of Investigation
361(1)
A.3 Results of Investigation
362(6)
A.3.1 Results of the Questionnaire with Users
362(1)
A.3.2 Results of Interview with Users
362(2)
A.3.3 Results of Estimate of Number of Installed Industrial Furnaces and Energy Consumption
364(4)
A.4 Evaluation Based on Results of Investigation
368(5)
A.4.1 Evaluation of Estimated Number of Industrial Furnaces
368(3)
A.4.2 Evaluation of the presumed Values of Energy Consumption of Industrial Furnaces
371(1)
A.4.3 Consideration of the Results of Interviews --- Efficiency of Industrial Furnaces
372(1)
A.5 Effect of Energy Saving by Development of High Performance Industrial Furnaces
373(4)
A.5.1 Assumptions of Calculations
373(3)
A.5.2 Results of the Calculation
376(1)
A.6 Summary
377(2)
References
378(1)
Appendix B Constants and Conversion Factors 379(8)
B.1 Universal Constants and Conversion Factors
379(2)
B.2 Nondimensional Parameters
381(1)
B.3 Nomenclature
382(5)
Index 387


Tsuji, Hiroshi; Gupta, Ashwani K.; Hasegawa, Toshiaki; Katsuki, Masashi; Kishimoto, Ken; Morita, Mitsunobu