Atjaunināt sīkdatņu piekrišanu

Hodge-Laplacian: Boundary Value Problems on Riemannian Manifolds [Hardback]

  • Formāts: Hardback, 528 pages, height x width: 240x170 mm, weight: 1019 g
  • Sērija : De Gruyter Studies in Mathematics
  • Izdošanas datums: 10-Oct-2016
  • Izdevniecība: De Gruyter
  • ISBN-10: 3110482665
  • ISBN-13: 9783110482669
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 165,40 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 528 pages, height x width: 240x170 mm, weight: 1019 g
  • Sērija : De Gruyter Studies in Mathematics
  • Izdošanas datums: 10-Oct-2016
  • Izdevniecība: De Gruyter
  • ISBN-10: 3110482665
  • ISBN-13: 9783110482669
Citas grāmatas par šo tēmu:
The core of this monograph is the development of tools to derive well-posedness results in very general geometric settings for elliptic differential operators. A new generation of Calderón-Zygmund theory is developed for variable coefficient singular integral operators, which turns out to be particularly versatile in dealing with boundary value problems for the Hodge-Laplacian on uniformly rectifiable subdomains of Riemannian manifolds via boundary layer methods. In addition to absolute and relative boundary conditions for differential forms, this monograph treats the Hodge-Laplacian equipped with classical Dirichlet, Neumann, Transmission, Poincaré, and Robin boundary conditions in regular Semmes-Kenig-Toro domains. Lying at the intersection of partial differential equations, harmonic analysis, and differential geometry, this text is suitable for a wide range of PhD students, researchers, and professionals.

Contents: Preface Introduction and Statement of Main Results Geometric Concepts and Tools Harmonic Layer Potentials Associated with the Hodge-de Rham Formalism on UR Domains Harmonic Layer Potentials Associated with the Levi-Civita Connection on UR Domains Dirichlet and Neumann Boundary Value Problems for the Hodge-Laplacian on Regular SKT Domains Fatou Theorems and Integral Representations for the Hodge-Laplacian on Regular SKT Domains Solvability of Boundary Problems for the Hodge-Laplacian in the Hodge-de Rham Formalism Additional Results and Applications Further Tools from Differential Geometry, Harmonic Analysis, Geometric Measure Theory, Functional Analysis, Partial Differential Equations, and Clifford Analysis Bibliography Index
Preface v
1 Introduction and Statement of Main Results
1(48)
1.1 First Main Result: Absolute and Relative Boundary Conditions
3(8)
1.2 Other Problems Involving Tangential and Normal Components of Harmonic Forms
11(10)
1.3 Boundary Value Problems for Hodge-Dirac Operators
21(3)
1.4 Dirichlet, Neumann, Transmission, Poincare, and Robin-Type Boundary Problems
24(19)
1.5 Structure of the Monograph
43(6)
2 Geometric Concepts and Tools
49(60)
2.1 Differential Geometric Preliminaries
49(18)
2.2 Elements of Geometric Measure Theory
67(24)
2.3 Sharp Integration by Parts Formulas for Differential Forms in Ahlfors Regular Domains
91(5)
2.4 Tangential and Normal Differential Forms on Ahlfors Regular Sets
96(13)
3 Harmonic Layer Potentials Associated with the Hodge-de Rham Formalism on UR Domains
109(30)
3.1 A Fundamental Solution for the Hodge-Laplacian
109(8)
3.2 Layer Potentials for the Hodge-Laplacian in the Hodge-de Rham Formalism
117(11)
3.3 Fredholm Theory for Layer Potentials in the Hodge-de Rham Formalism
128(11)
4 Harmonic Layer Potentials Associated with the Levi-Civita Connection on UR Domains
139(46)
4.1 The Definition and Mapping Properties of the Double layer
140(29)
4.2 The Double Layer on UR Subdomains of Smooth Manifolds
169(4)
4.3 Compactness of the Double Layer on Regular SKT Domains
173(12)
5 Dirichlet and Neumann Boundary Value Problems for the Hodge-Laplacian on Regular SKT Domains
185(46)
5.1 Functional Analytic Properties for Harmonic Layer Potentials in UR Domains
186(10)
5.2 Invertibility Results for Layer Potentials Associated with the Levi-Civita Connection
196(8)
5.3 Solving the Dirichlet, Neumann, Transmission, Poincare, and Robin Boundary Value Problems
204(27)
6 Fatou Theorems and Integral Representations for the Hodge-Laplacian on Regular SKT Domains
231(44)
6.1 Convergence of Families of Singular Integral Operators
231(19)
6.2 A Fatou Theorem for the Hodge-Laplacian in Regular SKT Domains
250(11)
6.3 Spaces of Harmonic Fields and Green Type Formulas
261(14)
7 Solvability of Boundary Problems for the Hodge-Laplacian in the Hodge-de Rham Formalism
275(40)
7.1 Preparatory Results
275(13)
7.2 Solvability Results
288(27)
8 Additional Results and Applications
315(56)
8.1 de Rham Cohomology on Regular SKT Surfaces
315(21)
8.2 Maxwell's Equations in Regular SKT Domains
336(3)
8.3 Dirichlet-to-Neumann Operators for the Hodge-Laplacian in Regular SKT Domains
339(8)
8.4 Fatou Type Results with Additional Constraints or Regularity Conditions
347(5)
8.5 Weak Tangential and Normal Traces in Regular SKT Domains with Friedrichs Property
352(15)
8.6 The Hodge-Poisson Kernel and the Hodge-Harmonic Measure
367(4)
9 Further Tools from Differential Geometry, Harmonic Analysis, Geometric Measure Theory, Functional Analysis, Partial Differential Equations, and Clifford Analysis
371(130)
9.1 Connections and Covariant Derivatives on Vector Bundles
371(10)
9.2 The Extension of the Levi-Civita Connection to Differential Forms
381(5)
9.3 The Bochner-Laplacian and Weintzenbock's Formula
386(7)
9.4 Sobolev Spaces on Boundaries of Ahlfors Regular Domains: The Euclidean Setting
393(15)
9.5 Sobolev Spaces on Boundaries of Ahlfors Regular Domains: The Manifold Setting
408(9)
9.6 Integrating by Parts on the Boundaries of Ahlfors Regular Domains
417(27)
9.7 A Global Sobolev Regularity Result
444(2)
9.8 The PV Harmonic Double Layer on a UR Domain
446(5)
9.9 Calderon-Zygmund Theory on UR Domains on Manifolds
451(23)
9.10 The Fredholmness and Invertibility of Elliptic Differential Operators
474(8)
9.11 Compact and Close-to-Compact Singular Integral Operators
482(8)
9.12 A Sharp Divergence Theorem
490(3)
9.13 Clifford Analysis Rudiments
493(3)
9.14 Spectral Theory for Unbounded Linear Operators Subject to Cancellations
496(5)
Bibliography 501(6)
Index 507
D. Mitrea and M. Mitrea, Univ. of Missouri, USA; I. Mitrea, Temple Univ., Philadelphia, USA; M. Taylor, Univ. of North Carolina, USA.