Atjaunināt sīkdatņu piekrišanu

E-grāmata: Holographic Sensors

  • Formāts: PDF+DRM
  • Sērija : Springer Theses
  • Izdošanas datums: 03-Dec-2014
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783319135847
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 106,47 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Sērija : Springer Theses
  • Izdošanas datums: 03-Dec-2014
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783319135847
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This thesis presents a theoretical and experimental approach for the rapid fabrication, optimization and testing of holographic sensors for the quantification of pH, organic solvents, metal cations, and glucose in solutions.

Developing non-invasive and reusable diagnostics sensors that can be easily manufactured will support the monitoring of high-risk individuals in any clinical or point-of-care setting. Sensor fabrication approaches outlined include silver-halide chemistry, laser ablation and photopolymerization. The sensors employ off-axis Bragg diffraction gratings of ordered silver nanoparticles and localized refractive index changes in poly (2-hydroxyethyl methacrylate) and polyacrylamide films. The sensors exhibited reversible Bragg peak shifts, and diffracted the spectrum of narrow-band light over the wavelength range peak 495-1100 nm. Clinical trials of glucose sensors in the urine samples of diabetic patients demonstrated that they offer superior performance compared to commercial high-throughput urinalysis devices. Lastly, a generic smartphone application to quantify colorimetric tests was developed and tested for both Android and iOS operating systems. The sensing platform and smartphone application may have implications for the development of low-cost, reusable and equipment-free point-of-care diagnostic devices.
1 Point-of-Care Diagnostics
1(26)
1.1 The Development of Rapid Diagnostics
3(4)
1.2 Sensing Mechanisms
7(8)
1.2.1 Colorimetric Reagents
7(5)
1.2.2 Electrochemical Sensors
12(1)
1.2.3 Colloidal Nanoparticles (NPs)
13(1)
1.2.4 Chemiluminescence (CL)
13(1)
1.2.5 Electrochemiluminescence (ECL)
14(1)
1.2.6 Fluorescence
15(1)
1.2.7 Genetically-Engineered Cells
15(1)
1.3 Next Generation Diagnostics
15(12)
References
17(10)
2 Fundamentals of Holographic Sensing
27(26)
2.1 Fabrication of Optical Devices
27(1)
2.2 History of Holography
28(4)
2.3 The Origins and Working Principles of Holographic Sensors
32(5)
2.4 Computational Modelling of Holographic Sensors in Fabrication and Readout
37(8)
2.4.1 Photochemical Patterning
37(2)
2.4.2 Simulations of the Optical Readouts
39(6)
2.5 Conclusions
45(8)
References
46(7)
3 Holographic pH Sensors
53(32)
3.1 Holographic pH Sensors via Silver-Halide Chemistry
53(2)
3.2 Fabrication of Holographic pH Sensors Through in Situ Size Reduction of Ag0 NPs
55(1)
3.3 Characterisation of Holographic pH Sensors
56(10)
3.3.1 Microscopic Imaging of Holographic pH Sensors
57(5)
3.3.2 Effective Index of Refraction Measurements
62(1)
3.3.3 Angular-Resolved Measurements
63(1)
3.3.4 Diffraction Efficiency Measurements
64(1)
3.3.5 Polymer Thickness and Roughness Measurements
65(1)
3.4 Optical Readouts
66(11)
3.4.1 Holographic pH Sensors Fabricated Through Silver Halide Chemistry
66(2)
3.4.2 Holographic pH Sensors Fabricated Through in Situ Size Reduction of Ag0 NPs
68(1)
3.4.3 Interference Due to Metal Ions
69(1)
3.4.4 Ionic Strength Interference in pH Measurements
70(1)
3.4.5 Sensing pH in Artificial Urine
71(1)
3.4.6 Paper-Based Holographic pH Sensors
72(5)
3.5 Discussion
77(8)
References
80(5)
4 Holographic Metal Ion Sensors
85(16)
4.1 Fabrication of Holographic Metal Ion Sensors via Photopolymerisation
86(3)
4.2 Optical Readouts
89(4)
4.2.1 Organic Solvents in Water
89(1)
4.2.2 Quantification of Cu2+ and Fe2+ Ions in Aqueous Solutions
89(4)
4.3 Conclusions
93(8)
References
94(7)
5 Holographic Glucose Sensors
101(34)
5.1 Diabetes Mellitus
101(2)
5.2 Holographic Glucose Sensors
103(3)
5.3 Computational Modelling of Holographic Glucose Sensors
106(1)
5.4 Fabrication of Holographic Glucose Sensors
107(1)
5.5 Holographic Glucose Sensors for Urinalysis
108(12)
5.5.1 Holographic Glucose Sensor Readouts
110(2)
5.5.2 Holographic Glucose Sensor Readouts in Artificial Urine
112(3)
5.5.3 Lactate and Fructose Interference
115(2)
5.5.4 Interference Due to Osmolality
117(1)
5.5.5 Tuning of the Wavelength Shift Range of the Holographic Glucose Sensor
118(1)
5.5.6 Exposure Bath to Tune the Base Position of the Bragg Peak
118(2)
5.6 Kinetic Theory for Hydrogel Swelling
120(2)
5.7 Quantification of Glucose Concentration in Urine
122(3)
5.8 Lactate and Fructose Interference
125(3)
5.9 Conclusions
128(7)
References
130(5)
6 Mobile Medical Applications
135(14)
6.1 Global Health and Mobile Medical Applications
135(3)
6.2 A Smartphone Algorithm for the Quantification of Colorimetric Assays
138(7)
6.2.1 Calibration of the Application
138(2)
6.2.2 User Interface of the Smartphone Application
140(1)
6.2.3 Colorimetric Measurements
141(4)
6.3 Conclusions
145(4)
References
146(3)
7 The Prospects for Holographic Sensors
149
7.1 The Development of Fabrication Approaches
149(3)
7.2 Ligand Chemistry
152(3)
7.3 Multiplexing Holographic Sensors with Microfluidic Devices
155(1)
7.4 Readouts with Smartphones and Wearable Devices
156(2)
7.5 The Vision for Holographic Sensors
158
References
159
Ali Yetisen received his B.Sc. degree in Mechanical Engineering from the University of Arizona in 2010, and his Ph.D. in Biotechnology from the University of Cambridge in 2014. His research interests are nanotechnology, nanoparticles, diagnostics, biomaterials and drug delivery. He has taught entrepreneurship and commercialization courses at the Judge Business School in Cambridge. Ali has published 25 journal articles and has a patent licenced to Hoffmann-La Roche. He has been the recipient of The Ann & Norman Hilberry Scholarship, Roche Continents Award, and Cambridge Infectious Diseases Fellowship. Currently, Ali serves as a reviewer for 20 journals in nanotechnology.