Atjaunināt sīkdatņu piekrišanu

E-grāmata: Homogenization of Coupled Phenomena in Heterogenous Media

(ENTPE, Lyon, France), (Joseph Fourier University, Grenoble, France), (Joseph Fourier University, Grenoble, France)
  • Formāts: PDF+DRM
  • Izdošanas datums: 05-Jan-2010
  • Izdevniecība: ISTE Ltd and John Wiley & Sons Inc
  • Valoda: eng
  • ISBN-13: 9780470610442
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 286,65 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām
  • Formāts: PDF+DRM
  • Izdošanas datums: 05-Jan-2010
  • Izdevniecība: ISTE Ltd and John Wiley & Sons Inc
  • Valoda: eng
  • ISBN-13: 9780470610442
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Both naturally-occurring and man-made materials are often heterogeneous materials formed of various constituents with different properties and behaviours. Studies are usually carried out on volumes of materials that contain a large number of heterogeneities. Describing these media by using appropriate mathematical models to describe each constituent turns out to be an intractable problem. Instead they are generally investigated by using an equivalent macroscopic description - relative to the microscopic heterogeneity scale - which describes the overall behaviour of the media. Fundamental questions then arise: Is such an equivalent macroscopic description possible? What is the domain of validity of this macroscopic description? The homogenization technique provides complete and rigorous answers to these questions.

This book aims to summarize the homogenization technique and its contribution to engineering sciences. Researchers, graduate students and engineers will find here a unified and concise presentation.

The book is divided into four parts whose main topics are





Introduction to the homogenization technique for periodic or random media, with emphasis on the physics involved in the mathematical process and the applications to real materials. Heat and mass transfers in porous media Newtonian fluid flow in rigid porous media under different regimes Quasi-statics and dynamics of saturated deformable porous media

Each part is illustrated by numerical or analytical applications as well as comparison with the self-consistent approach.
Main notations 17(4)
Introduction 21(6)
Part One. Upscaling Methods
27(80)
An Introduction to Upscaling Methods
29(26)
Introduction
29(1)
Heat transfer in a periodic bilaminate composite
30(6)
Transfer parallel to the layers
31(2)
Transfer perpendicular to the layers
33(2)
Comments
35(1)
Characteristic macroscopic length
35(1)
Bounds on the effective coefficients
36(10)
Theorem of virtual powers
36(2)
Minima in the complementary power and potential power
38(1)
Hill principle
39(1)
Voigt and Reuss bounds
40(1)
Upper bound: Voigt
40(2)
Lower bound: Reuss
42(2)
Comments
44(1)
Hashin and Shtrikman's bounds
45(1)
Higher-order bounds
46(1)
Self-consistent method
46(9)
Boundary-value problem
47(1)
Self-consistent hypothesis
48(1)
Self-consistent method with simple inclusions
49(1)
Determination of βα for a homogenous spherical inclusion
49(2)
Self-consistent estimate
51(1)
Implicit morphological constraints
52(1)
Comments
53(2)
Heterogenous Medium: Is an Equivalent Macroscopic Description Possible?
55(20)
Introduction
55(1)
Comments on techniques for micro-macro upscaling
56(4)
Homogenization techniques for separated length scales
57(2)
The ideal homogenization method
59(1)
Statistical modeling
60(1)
Method of multiple scale expansions
61(8)
Formulation of multiple scale problems
61(1)
Homogenizability conditions
61(1)
Double spatial variable
62(2)
Stationarity, asymptotic expansions
64(1)
Methodology
65(3)
Parallels between macroscopic models for materials with periodic and random structures
68(1)
Periodic materials
68(1)
Random materials with a REV
68(1)
Hill macro-homogenity and separation of scales
69(1)
Comments on multiple scale methods and statistical methods
69(6)
On the periodicity, the stationarity and the concept of the REV
69(1)
On the absence of, or need for macroscopic prerequisites
70(1)
On the homogenizability and consistency of the macroscopic description
71(1)
On the treatment of problems with several small parameters
72(3)
Homogenization by Multiple Scale Asymptotic Expansions
75(32)
Introduction
75(1)
Separation of scales: intuitive approach and experimental visualization
75(9)
Intuitive approach to the separation of scales
75(3)
Experimental visualization of fields with two length scales
78(1)
Investigation of a flexible net
78(3)
Photoelastic investigation of a perforated plate
81(3)
One-dimensional example
84(7)
Elasto-statics
85(1)
Equivalent macroscopic description
86(3)
Comments
89(2)
Elasto-dynamics
91(9)
Macroscopic dynamics
92(3)
Steady state
95(1)
Non-homogenizable description
95(2)
Comments on the different possible choices for spatial variables
97(3)
Expressing problems within the formalism of multiple scales
100(7)
How do we select the correct mathematical formulation based on the problem at hand?
100(1)
Need to evaluate the actual scale ratio εr
101(1)
Evaluation of the actual scale ratio εr
102(1)
Homogenous treatment of simple compression
103(1)
Point force in an elastic object
104(1)
Propagation of a harmonic plane wave in elastic composites
104(1)
Diffusion wave in heterogenous media
105(1)
Conclusions to be drawn from the examples
106(1)
Part two. Heat and Mass Transfer
107(88)
Heat Transfer in Composite Materials
109(34)
Introduction
109(1)
Heat transfer with perfect contact between constituents
109(21)
Formulation of the problem
110(3)
Thermal conductivities of the same order of magnitude
113(1)
Homogenization
113(4)
Macroscopic model
117(2)
Example: bilaminate composite
119(2)
Weakly conducting phase in a connected matrix: memory effects
121(1)
Homogenization
122(2)
Macroscopic model
124(1)
Example: bilaminate composite
125(1)
Composites with highly conductive inclusions embedded in a matrix
126(1)
Homogenization
127(2)
Macroscopic model
129(1)
Heat transfer with contact resistance between constituents
130(13)
Model I -- Very weak contact resistance
132(1)
Model II -- Moderate contact resistance
133(2)
Model III -- High contact resistance
135(3)
Model IV -- Model with two coupled temperature fields
138(2)
Model V -- Model with two decoupled temperature fields
140(1)
Example: bilaminate composite
141(1)
Choice of model
142(1)
Diffusion/Advection in Porous Media
143(18)
Introduction
143(1)
Diffusion-convection on the pore scale and estimates
143(3)
Diffusion dominates at the macroscopic scale
146(3)
Homogenization
146(1)
Boundary value problem for c*(0)
146(1)
Boundary value problem for c*(1)
147(1)
Boundary value problem for c*(2)
148(1)
Macroscopic diffusion model
148(1)
Comparable diffusion and advection on the macroscopic scale
149(2)
Homogenization
149(1)
Boundary value problems for c*(0) and c*(1)
149(1)
Boundary value problem for c*(2)
149(1)
Macroscopic diffusion-advection model
150(1)
Advection dominant at the macroscopic scale
151(3)
Homogenization
151(1)
Boundary value problem for c*(0)
151(1)
Boundary value problem for c*(1)
151(2)
Boundary value problem for c*(2)
153(1)
Dispersion model
154(1)
Very strong advection
154(1)
Example: Porous medium consisting of a periodic lattice of narrow parallel slits
155(4)
Analysis of the flow
156(1)
Determination of the dispersion coefficient
157(2)
Conclusion
159(2)
Numerical and Analytical Estimates for the Effective Diffusion Coefficient
161(34)
Introduction
161(1)
Effective thermal conductivity for some periodic media
162(13)
Media with spherical inclusions, connected or non-connected
162(1)
Microstructures
162(1)
Solution to the boundary value problem over the period
163(1)
Effective thermal conductivity
163(5)
Fibrous media consisting of parallel fibers
168(1)
Microstructures
168(1)
Solution to the boundary value problem over the period
169(1)
Effective thermal conductivity
170(5)
Study of various self-consistent schemes
175(13)
Self-consistent scheme for bi-composite inclusions
175(1)
Granular or cellular media
175(3)
Fibrous media
178(1)
General remarks on bi-composite models
179(2)
Self-consistent scheme with multi-composite substructures
181(1)
n-composite substructure
181(2)
Treatment of a contact resistance
183(1)
Combined self-consistent schemes
184(1)
Mixed self-consistent schemes
185(1)
Multiple self-consistent schemes
185(3)
Comparison with experimental results for the thermal conductivity of cellular concrete
188(7)
Dry cellular concrete
189(1)
Damp cellular concrete
190(5)
Part three. Newtonian Fluid Flow Through Rigid Porous Media
195(142)
Incompressible Newtonian Fluid Flow Through a Rigid Porous Medium
197(32)
Introduction
197(2)
Steady-state flow of an incompressible Newtonian fluid in a porous medium: Darcy's law
199(10)
Darcy's law
201(2)
Comments on macroscopic behavior
203(1)
Physical meaning of the macroscopic quantities
203(1)
Structure of the macroscopic law
204(1)
Study of the underlying problem
205(1)
Properties of K*
205(1)
Energetic consistency
206(1)
Non-homogenizable situations
206(1)
Case where QL=
207(1)
Case where QL=
208(1)
Dynamics of an incompressible fluid in a rigid porous medium
209(11)
Local description and estimates
209(2)
Macroscopic behavior: generalized Darcy's law
211(2)
Discussion of the macroscopic description
213(1)
Physical meaning of macroscopic quantities
213(1)
Energetic consistency
213(2)
The tensors H* and A* are symmetric
215(1)
Low-frequency behavior
215(1)
Additional mass effect
215(1)
Transient excitation: Dynamics with memory effects
216(1)
Quasi-periodicity
216(1)
Circular cylindrical pores
216(4)
Appearance of inertial non-linearities
220(6)
Macroscopic model
221(3)
Macroscopically isotropic and homogenous medium
224(2)
Conclusion
226(1)
Summary
226(3)
Compressible Newtonian Fluid Flow Though a Rigid Porous Medium
229(28)
Introduction
229(1)
Slow isothermal flow of a highly compressible fluid
229(9)
Estimates
230(1)
Steady-state flow
231(4)
Transient conservation of mass
235(3)
Wall slip: Klinkenberg's law
238(7)
Pore scale description and estimates
238(2)
Klinkenberg's law
240(1)
Small Knudsen numbers
241(2)
Properties of the Klinkenberg tensor Hk
243(1)
Hk is positive
243(1)
Symmetries
244(1)
Acoustics in a rigid porous medium saturated with a gas
245(12)
Harmonic perturbation of a gas in a porous medium
246(1)
Analysis of local physics
247(2)
Non-dimensionalization and renormalization
249(2)
Homogenization
251(1)
Pressure and temperature
251(1)
Velocity field
252(1)
Macroscopic conservation of mass
252(1)
Biot-Allard model
253(4)
Numerical Estimation of the Permeability of Some Periodic Porous Media
257(18)
Introduction
257(2)
Permeability tensor: recap of results from periodic homogenization
259(1)
Steady state permeability of fibrous media
259(8)
Microstructures
259(1)
Transverse permeability
260(1)
Mesh, velocity fields and microscopic pressure fields
261(1)
Transverse permeability KT
262(2)
Longitudinal permeability
264(1)
Mesh, velocity fields
264(1)
Longitudinal permeability KL
264(3)
Steady state and dynamic permeability of granular media
267(8)
Microstructures
267(1)
Methodology
267(2)
Steady state permeability
269(1)
Dynamic permeability
269(1)
Effect of frequency
269(1)
Low-frequency approximation
270(2)
High-frequency approximation
272(3)
Self-consistent Estimates and Bounds for Permeability
275(62)
Introduction
275(3)
Notation and glossary
277(1)
Intrinsic (or steady state) permeability of granular and fibrous media
278(21)
Summary of results obtained through periodic homogenization
279(1)
Global and local descriptions -- energetic consistency
280(1)
Connections between the micro- and macroscopic descriptions
281(1)
Self-consistent estimate of the permeability of granular media
281(1)
Formulation of the self-consistent problem
281(2)
General expression for the fields in the inclusion
283(2)
Boundary conditions
285(3)
Solution and self-consistent estimates
288(1)
Pressure approach: p field
288(1)
Velocity approach: v field
289(1)
Comparison of estimates
289(2)
From spherical substructure to granular materials
291(1)
Cubic lattices of spheres
291(1)
Bounds on the permeability of ordered or disordered granular media
292(4)
Empirical laws
296(1)
Intrinsic permeability of fibrous media
297(1)
Periodic arrangements of identical cylinders
298(1)
Permeability bounds for ideal ordered and disordered fibrous media
298(1)
Dynamic permeability
299(19)
Summary of homogenization results
300(1)
Global and local description -- Energetic consistency
300(2)
Frequency characteristics of dynamic permeability
302(2)
Self-consistent estimates of dynamic permeability
304(1)
Formulation of the problem in the inclusion
304(1)
Expressions for the fields
305(1)
Boundary conditions
306(1)
Solution and self-consistent estimates
307(1)
P estimate: p field
308(1)
V estimate: v field
309(1)
Commentary and comparisons with numerical results for periodic lattices
310(4)
Bounds on the dynamic permeability of granular media
314(1)
Bounds on the real and imaginary parts of K(ω)
315(1)
Bounds on the real and imaginary parts of H(ω)
316(1)
Low-frequency bounds
317(1)
High-frequency bounds for tortuosity
318(1)
Klinkenberg correction to intrinsic permeability
318(4)
Local and global descriptions obtained through homogenization
318(1)
Self-consistent estimates of Klinkenberg permeability
319(3)
Thermal permeability -- compressibility of a gas in a porous medium
322(6)
Dynamic compressibility obtained by homogenization
322(1)
Self-consistent estimate of the thermal permeability of granular media
323(1)
Properties of thermal permeability
324(2)
Significance of connectivity of phases
326(1)
Critical thermal and viscous frequencies
327(1)
Analogy between the trapping constant and permeability
328(6)
Trapping constant
328(2)
Comparison between the trapping constant and intrinsic permeability
330(1)
Self-consistent estimate of the trapping constant for granular media
331(1)
Diffusion-trapping in the transient regime
332(1)
Steady-state diffusion-trapping regime in media with a finite absorptivity
333(1)
Conclusion
334(3)
Part four. Saturated Deformable Porous Media
337(116)
Quasi-statics of Saturated Deformable Porous Media
339(28)
Empty porous matrix
340(9)
Local description
340(2)
Equivalent macroscopic behavior
342(1)
Boundary-value problem for u*(0)
342(1)
Boundary-value problem for u*(1)
343(1)
Boundary-value problem for u*(2)
344(1)
Investigation of the equivalent macroscopic behavior
345(1)
Physical meaning of quantities involved in macroscopic description
345(1)
Properties of the effective elastic tensor
346(2)
Energetic consistency
348(1)
Calculation of the effective coefficients
348(1)
Deformable saturated porous medium
349(18)
Local description and estimates
350(2)
Diphasic macroscopic behavior: Biot model
352(1)
Boundary-value problem for u*(0)
352(1)
Boundary-value problem for p*(0) and v*(0)
352(1)
Boundary-value problem for u*(1)
353(1)
First compatibility equation
354(1)
Second compatibility equation
355(1)
Macroscopic description
355(1)
Properties of the macroscopic diphasic description
355(1)
Properties of macroscopic quantities and effective coefficients
355(1)
The coupling between (11.31) and (11.32) is symmetric, α = γ
356(1)
The tensor α* is symmetric
356(1)
The coefficient β* is positive, β* > 0
357(1)
Specific cases
357(1)
Homogenious matrix material
357(1)
Homogenous and isotropic matrix material and macroscopically isotropic matrix
358(1)
Diphasic consolidation equations: Biot model
359(2)
Effective stress
361(1)
Compressible interstitial fluid
361(1)
Monophasic elastic macroscopic behavior: Gassman model
362(1)
Monophasic viscoelastic macroscopic behavior
363(2)
Relationships between the three macroscopic models
365(2)
Dynamics of Saturated Deformable Porous Media
367(22)
Introduction
367(1)
Local description and estimates
368(2)
Diphasic macroscopic behavior: Biot model
370(4)
Study of diphasic macroscopic behavior
374(3)
Equations for the diphasic dynamics of a saturated deformable porous medium
374(1)
Rheology and dynamics
375(1)
Additional mass
376(1)
Transient motion
376(1)
Small pulsation ω
376(1)
Dispersive waves
376(1)
Macroscopic monophasic elastic behavior: Gassman model
377(1)
Monophasic viscoelastic macroscopic behavior
378(2)
Choice of macroscopic behavior associated with a given material and disturbance
380(9)
Effects of viscosity
382(1)
Transition from diphasic behavior to elastic behavior
382(1)
Transition from viscoelastic behavior to elastic behavior
383(1)
Effect of rigidity of the porous skeleton
384(1)
Effect of frequency
384(1)
Low-dispersion P1 and S waves
384(1)
Dispersive P2 wave
385(1)
Effect of pore size
385(1)
Application example: bituminous concretes
385(4)
Estimates and Bounds for Effective Poroelastic Coefficients
389(18)
Introduction
389(1)
Recap of the results of periodic homogenization
389(2)
Periodic granular medium
391(7)
Microstructure and material
391(1)
Effective elastic tensor c
392(1)
Methodology
392(2)
Compressibility and shear moduli
394(2)
Degree of anisotropy
396(1)
Young's modulus and Poisson's ratio
396(2)
Biot tensor
398(1)
Influence of microstructure: bounds and self-consistent estimates
398(5)
Voigt and Reuss bounds
399(1)
Hashin and Shtrikman bounds
399(1)
Self-consistent estimates
400(1)
Comparison: numerical results, bounds and self-consistent estimates
401(2)
Comparison with experimental data
403(4)
Wave Propagation in Isotropic Saturated Poroelastic Media
407(46)
Introduction
407(1)
Basics
408(4)
Notation
408(2)
Comments on the parameters
410(1)
Elastic coefficients
410(1)
Dynamic permeability
410(1)
Degrees of freedom and dimensionless parameters
411(1)
Three modes of propagation in a saturated porous medium
412(11)
Wave equations
413(3)
Elementary wave fields: plane waves
416(1)
Homogeneous plane waves
416(1)
Inhomogenous plane waves
417(2)
Physical characteristics of the modes
419(1)
Low frequencies: f fc
419(2)
High frequencies: f fc
421(2)
Full spectrum
423(1)
Transmission at an elastic-poroelastic interface
423(7)
Expression for the conditions at the interface
426(2)
Transmission of compression waves
428(2)
Rayleigh waves
430(2)
Green's functions
432(13)
Source terms
432(1)
Determination of the fundamental solutions
433(4)
Fundamental solutions in plane geometry
437(1)
Symmetry of the Green's matrix, and reciprocity theorem
438(1)
Properties of radiated fields
439(2)
Far-field -- near-field -- quasi-static regime
441(1)
Decomposition into elementary waves
442(1)
Energy and moment sources: explosion and injection
442(3)
Integral representation
445(3)
Dislocations in porous media
448(5)
Bibliography 453(20)
Index 473
Jean-Louis Auriault received a civil engineer degree from Ecole Nationale des Ponts et Chaussées, Paris. He served as a Professor of continuum mechanics at University Joseph Fourier, Grenoble.

Claude Boutin is civil engineer. He received Habilitation at University Joseph Fourier, Grenoble. He serves as a Professor at école Nationale des Travaux publics de l'Etat, Lyon.

Christian Geindreau, after ENS Cachan, received a Ph.D in mechanics at the University Joseph Fourier. He serves as a Professor in mechanics at the University Joseph Fourier, Grenoble.