Preface |
|
xi | |
Acknowledgments |
|
xiii | |
Introduction |
|
1 | (3) |
|
1 Models for Homotopy Theories |
|
|
4 | (30) |
|
1.1 Some Basics in Category Theory |
|
|
4 | (9) |
|
1.2 Weak Equivalences and Localization |
|
|
13 | (3) |
|
1.3 Classical Homotopy Theory |
|
|
16 | (2) |
|
|
18 | (4) |
|
|
22 | (3) |
|
1.6 Equivalences Between Model Categories |
|
|
25 | (3) |
|
1.7 Additional Structures on Model Categories |
|
|
28 | (6) |
|
|
34 | (32) |
|
2.1 Simplicial Sets and Simplicial Objects |
|
|
34 | (3) |
|
2.2 Simplicial Sets as Models for Spaces |
|
|
37 | (2) |
|
2.3 Homotopy Limits and Homotopy Colimits |
|
|
39 | (3) |
|
2.4 Simplicial Model Categories |
|
|
42 | (3) |
|
|
45 | (2) |
|
2.6 The Reedy Model Structure on Simplicial Spaces |
|
|
47 | (7) |
|
2.7 Combinatorial Model Categories |
|
|
54 | (2) |
|
2.8 Localized Model Categories |
|
|
56 | (7) |
|
2.9 Cartesian Model Categories |
|
|
63 | (3) |
|
3 Topological and Categorical Motivation |
|
|
66 | (17) |
|
|
66 | (2) |
|
3.2 Kan Complexes and Generalizations |
|
|
68 | (3) |
|
|
71 | (3) |
|
|
74 | (4) |
|
|
78 | (5) |
|
|
83 | (18) |
|
4.1 The Category of Small Simplicial Categories |
|
|
83 | (1) |
|
4.2 Fixed-Object Simplicial Categories |
|
|
84 | (2) |
|
|
86 | (2) |
|
4.4 Proof of the Existence of the Model Structure |
|
|
88 | (8) |
|
4.5 Properties of the Model Structure |
|
|
96 | (3) |
|
4.6 Nerves of Simplicial Categories |
|
|
99 | (2) |
|
|
101 | (23) |
|
|
102 | (5) |
|
5.2 Segal Spaces as Categories Up to Homotopy |
|
|
107 | (3) |
|
5.3 Complete Segal Spaces |
|
|
110 | (3) |
|
5.4 Categorical Equivalences |
|
|
113 | (3) |
|
5.5 Dwyer-Kan Equivalences |
|
|
116 | (8) |
|
|
124 | (33) |
|
6.1 Basic Definitions and Constructions |
|
|
125 | (5) |
|
6.2 Fixed-Object Segal Categories |
|
|
130 | (8) |
|
6.3 The First Model Structure |
|
|
138 | (7) |
|
6.4 The Equivalence With Complete Segal Spaces |
|
|
145 | (3) |
|
6.5 The Second Model Structure |
|
|
148 | (3) |
|
6.6 The Equivalence With Simplicial Categories |
|
|
151 | (6) |
|
|
157 | (56) |
|
|
157 | (3) |
|
7.2 Properties of Acyclic Cofibrations |
|
|
160 | (6) |
|
|
166 | (5) |
|
7.4 The Coherent Nerve and Rigidification Functors |
|
|
171 | (2) |
|
7.5 Necklaces and Their Rigidification |
|
|
173 | (6) |
|
7.6 Rigidification of Simplicial Sets |
|
|
179 | (8) |
|
7.7 Properties of the Rigidification Functor |
|
|
187 | (7) |
|
7.8 The Equivalence With Simplicial Categories |
|
|
194 | (13) |
|
7.9 The Equivalence With Complete Segal Spaces |
|
|
207 | (6) |
|
|
213 | (20) |
|
|
213 | (5) |
|
|
218 | (3) |
|
8.3 The Model Structure and Equivalence With Complete Segal Spaces |
|
|
221 | (12) |
|
9 Comparing Functors to Complete Segal Spaces |
|
|
233 | (15) |
|
9.1 Classifying and Classification Diagrams |
|
|
234 | (2) |
|
9.2 Some Results for Simplicial Categories |
|
|
236 | (3) |
|
9.3 Comparison of Functors |
|
|
239 | (3) |
|
9.4 Complete Segal Spaces From Simplicial Categories |
|
|
242 | (6) |
|
10 Variants on (∞, 1)-Categories |
|
|
248 | (13) |
|
10.1 Finite Approximations |
|
|
248 | (3) |
|
10.2 Stable (∞, 1)-Categories |
|
|
251 | (3) |
|
|
254 | (2) |
|
10.4 Higher (∞, n)-Categories |
|
|
256 | (5) |
References |
|
261 | (6) |
Index |
|
267 | |