Atjaunināt sīkdatņu piekrišanu

E-grāmata: Homotopy Theory of (infinity,1)-Categories

(University of Virginia)
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 44,00 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

The notion of an (8,1)-category has become widely used in homotopy theory, category theory, and in a number of applications. There are many different approaches to this structure, all of them equivalent, and each with its corresponding homotopy theory. This book provides a relatively self-contained source of the definitions of the different models, the model structure (homotopy theory) of each, and the equivalences between the models. While most of the current literature focusses on how to extend category theory in this context, and centers in particular on the quasi-category model, this book offers a balanced treatment of the appropriate model structures for simplicial categories, Segal categories, complete Segal spaces, quasi-categories, and relative categories, all from a homotopy-theoretic perspective. Introductory chapters provide background in both homotopy and category theory and contain many references to the literature, thus making the book accessible to graduates and to researchers in related areas.

Homotopical or (8,1)-categories have become a significant framework in many areas of mathematics. This book gives an introduction to the different approaches to these structures and the comparisons between them from the perspective of homotopy theory.

Recenzijas

'The writing is accessible, even for students, and the ideas are clear. The author gives references for every claim and definition, with the added advantage that some technical [ lengthy] points can be left out to avoid burying the ideas.' Najib Idrissi, zbMATH

Papildus informācija

An introductory treatment to the homotopy theory of homotopical categories, presenting several models and comparisons between them.
Preface xi
Acknowledgments xiii
Introduction 1(3)
1 Models for Homotopy Theories
4(30)
1.1 Some Basics in Category Theory
4(9)
1.2 Weak Equivalences and Localization
13(3)
1.3 Classical Homotopy Theory
16(2)
1.4 Model Categories
18(4)
1.5 Homotopy Categories
22(3)
1.6 Equivalences Between Model Categories
25(3)
1.7 Additional Structures on Model Categories
28(6)
2 Simplicial Objects
34(32)
2.1 Simplicial Sets and Simplicial Objects
34(3)
2.2 Simplicial Sets as Models for Spaces
37(2)
2.3 Homotopy Limits and Homotopy Colimits
39(3)
2.4 Simplicial Model Categories
42(3)
2.5 Simplicial Spaces
45(2)
2.6 The Reedy Model Structure on Simplicial Spaces
47(7)
2.7 Combinatorial Model Categories
54(2)
2.8 Localized Model Categories
56(7)
2.9 Cartesian Model Categories
63(3)
3 Topological and Categorical Motivation
66(17)
3.1 Nerves of Categories
66(2)
3.2 Kan Complexes and Generalizations
68(3)
3.3 Classifying Diagrams
71(3)
3.4 Higher Categories
74(4)
3.5 Homotopy Theories
78(5)
4 Simplicial Categories
83(18)
4.1 The Category of Small Simplicial Categories
83(1)
4.2 Fixed-Object Simplicial Categories
84(2)
4.3 The Model Structure
86(2)
4.4 Proof of the Existence of the Model Structure
88(8)
4.5 Properties of the Model Structure
96(3)
4.6 Nerves of Simplicial Categories
99(2)
5 Complete Segal Spaces
101(23)
5.1 Segal Spaces
102(5)
5.2 Segal Spaces as Categories Up to Homotopy
107(3)
5.3 Complete Segal Spaces
110(3)
5.4 Categorical Equivalences
113(3)
5.5 Dwyer-Kan Equivalences
116(8)
6 Segal Categories
124(33)
6.1 Basic Definitions and Constructions
125(5)
6.2 Fixed-Object Segal Categories
130(8)
6.3 The First Model Structure
138(7)
6.4 The Equivalence With Complete Segal Spaces
145(3)
6.5 The Second Model Structure
148(3)
6.6 The Equivalence With Simplicial Categories
151(6)
7 Quasi-Categories
157(56)
7.1 Basic Definitions
157(3)
7.2 Properties of Acyclic Cofibrations
160(6)
7.3 The Model Structure
166(5)
7.4 The Coherent Nerve and Rigidification Functors
171(2)
7.5 Necklaces and Their Rigidification
173(6)
7.6 Rigidification of Simplicial Sets
179(8)
7.7 Properties of the Rigidification Functor
187(7)
7.8 The Equivalence With Simplicial Categories
194(13)
7.9 The Equivalence With Complete Segal Spaces
207(6)
8 Relative Categories
213(20)
8.1 Basic Definitions
213(5)
8.2 Subdivision Functors
218(3)
8.3 The Model Structure and Equivalence With Complete Segal Spaces
221(12)
9 Comparing Functors to Complete Segal Spaces
233(15)
9.1 Classifying and Classification Diagrams
234(2)
9.2 Some Results for Simplicial Categories
236(3)
9.3 Comparison of Functors
239(3)
9.4 Complete Segal Spaces From Simplicial Categories
242(6)
10 Variants on (∞, 1)-Categories
248(13)
10.1 Finite Approximations
248(3)
10.2 Stable (∞, 1)-Categories
251(3)
10.3 Dendroidal Objects
254(2)
10.4 Higher (∞, n)-Categories
256(5)
References 261(6)
Index 267
Julia E. Bergner is an Associate Professor at the University of Virginia. She has written several foundational papers in the area of (, 1)-categories, and is currently working on generalizations to higher (, n)-categories, (, 1)-operads, and equivariant versions. She currently has an NSF CAREER award to investigate algebraic and geometric applications of these kinds of structures. This book was inspired by the notes from a series of lectures on 'The Homotopy Theory of Homotopy Theories' presented in Israel in 2010, with talks given by the author and a number of other participants.