Atjaunināt sīkdatņu piekrišanu

Hughes Electrical and Electronic Technology 12th edition [Mīkstie vāki]

4.05/5 (63 ratings by Goodreads)
  • Formāts: Paperback / softback, 1008 pages, height x width x depth: 224x189x40 mm, weight: 1520 g
  • Izdošanas datums: 15-Apr-2016
  • Izdevniecība: Pearson Education Limited
  • ISBN-10: 1292093048
  • ISBN-13: 9781292093048
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 102,82 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 1008 pages, height x width x depth: 224x189x40 mm, weight: 1520 g
  • Izdošanas datums: 15-Apr-2016
  • Izdevniecība: Pearson Education Limited
  • ISBN-10: 1292093048
  • ISBN-13: 9781292093048
Citas grāmatas par šo tēmu:
All engineers need to understand the fundamental principles of electrical and electronic technology. This best-selling text provides a clear and accessible introduction to the area, with balanced coverage of electrical, electronic, and power engineering.
Prefaces xvii
Section 1 Electrical Principles
1(352)
1 International System of Measurement
3(9)
1.1 The International System
4(1)
1.2 SI derived units
5(1)
1.3 Unit: of turning moment or torque
6(1)
1.4 Unit of work or energy
7(1)
1.5 Unit of power
8(1)
1.6 Efficiency
9(1)
1.7 Temperature
10(2)
Summary of important formulae
10(1)
Terms and concepts
11(1)
2 Introduction to Electrical Systems
12(18)
2.1 Electricity and the engineer
13(1)
2.2 An electrical system
13(2)
2.3 Electric charge
15(1)
2.4 Movement of electrons
15(1)
2.5 Current flow in a circuit
16(1)
2.6 Electromotive force and potential difference
16(1)
2.7 Electrical units
17(3)
2.8 Ohm's law
20(2)
2.9 Resistors
22(1)
2.10 Resistor coding
23(2)
2.11 Conductors and insulators
25(1)
2.12 The electric circuit in practice
26(4)
Summary of important formulae
27(1)
Terms and concepts
28(2)
3 Simple DC Circuits
30(31)
3.1 Series circuits
31(5)
3.2 Parallel networks
36(5)
3.3 Series circuits versus parallel networks
41(1)
3.4 Kirchhoff's laws
42(7)
3.5 Power and energy
49(3)
3.6 Resistivity
52(2)
3.7 Temperature coefficient of resistance
54(2)
3.8 Temperature rise
56(5)
Summary of important formulae
57(1)
Terms and concepts
58(3)
4 Network Theorems
61(35)
4.1 New circuit analysis techniques
62(1)
4.2 Kirchhoff's laws and network solution
62(8)
4.3 Mesh analysis
70(2)
4.4 Nodal analysis
72(3)
4.5 Superposition theorem
75(2)
4.6 Thevenin's theorem
77(4)
4.7 The constant--current generator
81(3)
4.8 Norton's theorem
84(2)
4.9 Delta--star transformation
86(1)
4.10 Star--delta transformation
87(1)
4.11 Π and T networks
88(4)
4.12 Maximum power transfer
92(4)
Summary of important formulae
93(1)
Terms and concepts
93(3)
5 Capacitance and Capacitors
96(40)
5.1 Capacitors
97(1)
5.2 Hydraulic analogy
98(1)
5.3 Charge and voltage
99(1)
5.4 Capacitance
99(1)
5.5 Capacitors in parallel
100(1)
5.6 Capacitors in series
100(1)
5.7 Distribution of voltage across capacitors in series
101(1)
5.8 Capacitance and the capacitor
102(1)
5.9 Electric fields
103(1)
5.10 Electric field strength and electric flux density
103(2)
5.11 Relative permittivity
105(1)
5.12 Capacitance of a multi--plate capacitor
106(1)
5.13 Composite--dielectric capacitors
107(3)
5.14 Charging and discharging currents
110(1)
5.15 Growth and decay
111(2)
5.16 Analysis of growth and decay
113(3)
5.17 Discharge of a capacitor through a resistor
116(2)
5.18 Transients in CR networks
118(5)
5.19 Energy stored in a charged capacitor
123(1)
5.20 Force of attraction between oppositely charged plates
124(1)
5.21 Dielectric strength
125(1)
5.22 Leakage and conduction currents in capacitors
126(1)
5.23 Displacement current in a dielectric
127(1)
5.24 Types of capacitor and capacitance
127(9)
Summary of important formulae
130(1)
Terms and concepts
131(5)
6 Electromagnetism
136(15)
6.1 Magnetic field
137(1)
6.2 Direction of magnetic field
137(1)
6.3 Characteristics of lines of magnetic flux
137(1)
6.4 Magnetic field due to an electric current
138(1)
6.5 Magnetic field of a solenoid
139(1)
6.6 Force on a current--carrying conductor
140(2)
6.7 Force determination
142(2)
6.8 Electromagnetic induction
144(1)
6.9 Direction of induced e.m.f.
144(1)
6.10 Magnitude of the generated or induced e.m.f.
145(2)
6.11 Magnitude of e.m.f. induced in a coil
147(4)
Summary of important formulae
149(1)
Terms and concepts
149(2)
7 Simple Magnetic Circuits
151(15)
7.1 Introduction to magnetic circuits
152(1)
7.2 Magnetomotive force and magnetic field strength
152(1)
7.3 Permeability of free space or magnetic constant
153(2)
7.4 Relative permeability
155(2)
7.5 Reluctance
157(1)
7.6 `Ohm's law for a magnetic circuit'
158(2)
7.7 Determination of the B/H characteristic
160(2)
7.8 Comparison of electromagnetic and electrostatic terms
162(4)
Summary of important formulae
163(1)
Terms and concepts
163(3)
8 Inductance in a DC Circuit
166(35)
8.1 Inductive and non--inductive circuits
167(1)
8.2 Unit of inductance
168(2)
8.3 Inductance in terms of flux--linkages per ampere
170(3)
8.4 Factors determining the inductance of a coil
173(2)
8.5 Ferromagnetic--cored inductor in a d.c. circuit
175(1)
8.6 Growth in an inductive circuit
176(3)
8.7 Analysis of growth
179(2)
8.8 Analysis of decay
181(2)
8.9 Transients in LR networks
183(3)
8.10 Energy stored in an inductor
186(3)
5.11 Mutual inductance
189(3)
8.12 Coupling coefficient
192(1)
8.13 Coils connected in series
193(2)
8.14 Types of inductor and inductance
195(6)
Summary of important formulae
196(1)
Terms and concepts
197(4)
9 Alternating Voltage and Current
201(25)
9.1 Alternating systems
202(1)
9.2 Generation of an alternating e.m.f.
202(4)
9.3 Waveform terms and definitions
206(2)
9.4 Relationship between frequency, speed and number of pole pairs
208(1)
9.5 Average and r.m.s. values of an alternating current
208(2)
9.6 Average and r.m.s. values of sinusoidal currents and voltages
210(5)
9.7 Average and r.m.s. values of non--sinusoidal currents and voltages
215(1)
9.8 Representation of an alternating quantity by a phasor
216(2)
9.9 Addition and subtraction of sinusoidal alternating quantities
218(2)
9.10 Phasor diagrams drawn with r.m.s. values instead of maximum values
220(1)
9.11 Alternating system frequencies in practice
221(5)
Summary of important formulae
222(1)
Terms and concepts
222(4)
10 Single-phase Series Circuits
226(21)
10.1 Basic a.c. circuits
227(1)
10.2 Alternating current in a resistive circuit
227(1)
10.3 Alternating current in an inductive circuit
228(2)
10.4 Current and voltage in an inductive circuit
230(2)
10.5 Mechanical analogy of an inductive circuit
232(1)
10.6 Resistance and inductance in series
233(3)
10.7 Alternating current in a capacitive circuit
236(1)
10.8 Current and voltage in a capacitive circuit
237(1)
10.9 Analogies of a capacitance in an a.c. circuit
238(1)
10.10 Resistance and capacitance in series
238(2)
10.11 Alternating current in an RLC circuit
240(7)
Summary of important formulae
244(1)
Terms and concepts
245(2)
11 Single-phase Parallel Networks
247(16)
11.1 Bank a.c. parallel circuits
248(1)
11.2 Simple parallel circuits
248(4)
11.3 Parallel impedance circuits
252(4)
11.4 Polar impedances
256(3)
11.5 Polar admittances
259(4)
Summary of important formulae
261(1)
Terms and concepts
261(2)
12 Complex Notation
263(22)
12.1 The j operator
264(1)
12.2 Addition and subtraction of phasors
265(1)
12.3 Voltage, current and impedance
266(3)
12.4 Admittance, conductance and susceptance
269(1)
12.5 RL scries circuit admittance
270(1)
12.6 RC series circuit admittance
270(1)
12.7 Parallel admittance
271(4)
12.8 Calculation of power using complex notation
275(1)
12.9 Power and voltamperes
276(1)
12.10 Complex power
277(8)
Summary of important formulae
281(1)
Terms and concepts
282(3)
13 Power in AC Circuits
285(17)
13.1 The impossible power
286(1)
13.2 Power in a resistive circuit
286(1)
13.3 Power in a purely inductive circuit
287(2)
13.4 Power in a purely capacitive circuit
289(1)
13.5 Power in a circuit with resistance and reactance
290(2)
13.6 Power factor
292(2)
13.7 Active and reactive currents
294(2)
13.8 The practical importance of power factor
296(1)
13.9 Power factor improvement or correction
297(1)
13.10 Parallel loads
298(4)
1.3.11 Measurement of power in a single--phase circuit
300(1)
Summary of important formulae
300(1)
Terms and concepts
301(1)
14 Resonance in AC Circuits
302(23)
14.1 Introduction
303(1)
14.2 Frequency variation in a series RLC circuit
303(3)
14.3 The resonant frequency of a series RLC circuit
306(1)
14.4 The current in a series RLC circuit
306(1)
14.5 Voltages in a series RLC circuit
306(1)
14.6 Quality factor Q
307(2)
14.7 Oscillation of energy at resonance
309(1)
14.8 Mechanical analogy of a resonant circuit
310(1)
14.9 Series resonance using complex notation
310(1)
14.10 Bandwidth
311(2)
14.11 Selectivity
313(3)
14.12 Parallel resonance
316(1)
14.13 Current magnification
317(1)
14.14 Parallel and series equivalents
318(1)
14.15 The two--branch parallel resonant circuit
319(6)
Summary of important formulae
322(1)
Terms and concepts
322(3)
15 Network Theorems Applied to AC Networks
325(28)
15.1 One stage further
326(1)
15.2 Kirchhoff's laws and network solution
326(7)
15.3 Nodal analysis (Node Voltage method)
333(1)
15.4 Superposition theorem
333(2)
15.5 Thevenin's theorem
335(5)
15.6 Norton's theorem
340(4)
15.7 Star--delta transformation
344(1)
15.8 Delta--star transformation
345(2)
15.9 Maximum power transfer
347(6)
Terms and concepts
348(5)
Section 2 Electronic Engineering
353(270)
16 Electronic Systems
355(7)
16.1 Introduction to systems
356(1)
16.2 Electronic systems
357(1)
16.3 Basic amplifiers
357(3)
16.4 Basic attenuators
360(1)
10.5 Block diagrams
360(1)
16.6 Layout of block diagrams
361(1)
Summary of important formulae
361(1)
Terms and concepts
361(1)
17 Passive Filters
362(37)
17.1 Introduction
363(1)
17.2 Types of filter
363(2)
17.3 Frequency response
365(1)
17.4 Logarithms
365(3)
17.5 Log scales
368(1)
17.6 The decibel (dB)
369(3)
17.7 The low--pass or lag circuit
372(4)
17.8 The high--pass or lead circuit
376(3)
17.9 Passband (or bandpass) filler
379(3)
17.10 Stopband (or bandstop) filters
382(1)
17.11 Bode plots
382(6)
17.12 2-port Networks
388(11)
Summary of important formulae
396(1)
Terms and concepts
397(2)
18 Amplifier Equivalent Networks
399(20)
18.1 Amplifier constant--voltage equivalent networks
400(2)
18.2 Amplifier constant--current equivalent networks
402(2)
18.3 Logarithmic units
404(3)
18.4 Frequency response
407(2)
18.5 Feedback
409(4)
18.6 Effect of feedback on input and output resistances
413(2)
18.7 Effect of feedback on bandwidth
415(1)
18.8 Distortion
415(4)
Summary of important formulae
416(1)
Terms and concepts
416(3)
19 Semiconductor Materials
419(12)
19.1 Introduction
420(1)
19.2 Atomic structure
420(1)
19.3 Covalent bonds
421(2)
19.4 An n--type semiconductor
423(1)
19.5 A p--type semiconductor
424(1)
19.6 Junction diode
425(3)
19.7 Construction and static characteristics of a junction diode
428(3)
Terms and concepts
430(1)
20 Rectifiers and Amplifier Circuits
431(67)
20.1 Rectifier circuits
432(1)
20.2 Half--wave rectifier
432(3)
20.3 Full--wave rectifier network
435(2)
20.4 Bridge rectifier network
437(2)
20.5 Smoothing
439(3)
20.6 Zener diode
442(1)
20.7 Bipolar junction transistor
442(2)
20.8 Construction of bipolar transistor
444(1)
20.9 Common-base and common--emitter circuits
444(1)
20.10 Static characteristics for a common-base circuit
445(1)
20.11 Static characteristics for a common--emitter circuit
446(1)
20.12 Relationship between α and β
447(1)
20.13 Load line for a transistor
448(1)
20.14 Transistor as an amplifier
449(7)
20.15 Circuit component selection
456(1)
20.16 Equivalent circuits of a transistor
457(4)
20.17 Hybrid parameters
461(1)
20.18 Limitations to the bipolar junction transistor
462(1)
20.19 Stabilizing voltages supplies
463(4)
20.20 Transistor as a switch
467(1)
20.21 Field effect transistor (FET)
467(1)
20.22 JUGFET
467(3)
20.23 IGFET
470(2)
20.24 Static characteristics of a FET
472(1)
20.25 Equivalent circuit of a LET
472(1)
20.26 The LET as a switch
473(1)
20.27 Cascaded amplifiers
474(5)
20.28 Integrated circuits
479(1)
20.29 Operational amplifiers
480(1)
20.30 The inverting operational amplifier
481(2)
20.31 The summing amplifier
483(1)
20.32 The non--inverting amplifier
484(1)
20.33 Differential amplifiers
485(2)
20.34 Common mode rejection ratio
487(11)
Summary of important formulae
487(2)
Terms and concepts
489(9)
21 Interfacing Digital and Analogue Systems
498(18)
21.1 The need for conversion
499(1)
21.2 Digital--to--analogue conversion
499(3)
21.3 D/A converter hardware
502(2)
21.4 D/A converters in practice
504(2)
21.5 R/2R ladder D/A converter
506(1)
21.6 Analogue--to--digital conversion
507(2)
21.7 Simple comparator
509(1)
21.8 A/D converters
510(2)
21.9 Converters in action
512(4)
Terms and concepts
513(3)
22 Digital Numbers
516(15)
22.1 Introduction
517(1)
22.2 Binary numbers
517(1)
22.3 Decimal to binary conversion
518(1)
22.4 Binary addition
519(1)
22.5 Binary subtraction
520(1)
22.6 Binary multiplication
520(1)
22.7 Binary division
521(2)
22.8 Negative binary numbers
523(1)
22.9 Signed binary addition
524(1)
22.10 Signed binary subtraction
525(1)
22.11 Signed binary multiplication
526(1)
22.12 Signed binary division
527(1)
22.13 The octal system
528(1)
22.14 Hexadecimal numbers
529(2)
Terms and concepts
530(1)
23 Digital Systems
531(38)
23.1 Introduction to logic
532(1)
23.2 Basic logic statements or functions
532(1)
23.3 The OR function
532(1)
23.4 The AND function
533(1)
23.5 The EXCLUSIVE-OR function
533(1)
23.6 The NOT function
534(1)
23.7 Logic gales
534(1)
23.8 The NOR function
535(1)
23.9 The NAND function
535(1)
23.10 Logic networks
536(1)
23.11 Combinational logic
537(3)
23.12 Gate standardization
540(3)
23.13 Karnaugh maps for simplifying combinational logic
543(7)
23.14 Timing diagrams
550(1)
23.15 Combinational and sequential logic circuits
551(1)
23.16 Synchronous and asynchronous sequential circuits
551(1)
23.17 Basic storage elements
552(8)
23.18 Integrated circuit logic gates
560(1)
23.19 Programmable logic and hardware description languages
561(8)
Summary of important formulae
565(1)
Terms and concepts
565(4)
24 Signals
569(19)
24.1 Classification of signals
570(6)
24.2 Representation of a signal by a continuum of impulses
576(2)
24.3 Impulse response
578(1)
24.4 Convolution sum for discrete--time systems
578(3)
24.5 Convolution integral for continuous--lime systems
581(1)
24.6 Deconvolution
582(1)
24.7 Relation between impulse response and unit step response
583(1)
24.8 Step and impulse responses of discrete--time systems
584(4)
Summary of important formulae
585(1)
Terms and concepts
586(2)
25 Data Transmission and Signals
588(12)
25.1 Transmission of information
589(1)
25.2 Analogue signals
589(1)
25.3 Digital signals
590(2)
25.4 Bandwidth
592(1)
25.5 Modulation
593(2)
25.6 Filters
595(1)
25.7 Demodulation
596(1)
25.8 Amplifying signals
597(1)
25.9 Digital or analogue?
598(2)
Terms and concepts
599(1)
26 Communications
600(13)
26.1 Basic concepts
601(2)
26.2 Information theory for source coding
603(2)
26.3 Data communication systems
605(1)
26.4 Coding for efficient transmission
606(3)
26.5 Source coding
609(4)
Summary of important formulae
611(1)
Terms and concepts
611(2)
27 Fibreoptics
613(10)
27.1 Introduction
614(1)
27.2 Fibre loss
614(1)
27.3 Refraction
615(2)
27.4 Light acceptance
617(1)
27.5 Attenuation
618(1)
27.6 Bandwidth
618(1)
27.7 Modulation
619(1)
27.8 Optical fibre systems
620(3)
Summary of important formulae
621(1)
Terms and concepts
622(1)
Section 3 Power Engineering
623(294)
28 Multiphase Systems
625(21)
28.1 Disadvantages of the single--phase system
626(1)
28.2 Generation of three--phase e.m.f.s.
626(1)
28.3 Delia connection of three--phase windings
627(1)
28.4 Star connection of three--phase windings
628(3)
28.5 Voltages and currents in a star-connected system
631(1)
28.6 Voltages and currents in a delta--connected system
632(3)
28.7 Power in a three--phase system with a balanced load
635(1)
28.8 Measurement of active power in a three--phase, three--wire system
636(2)
28.9 Power factor measurement by means of two wattmeters
638(3)
28.10 Two--phase systems
641(5)
Summary of important formulae
642(1)
Terms and concepts
643(3)
29 Transformers
646(34)
29.1 Introduction
647(1)
29.2 Core factors
647(1)
29.3 Principle of action of a transformer
648(1)
29.4 EMF equation of a transformer
649(2)
29.5 Phasor diagram for a transformer on no load
651(2)
29.6 Phasor diagram for an ideal loaded transformer
653(2)
29.7 Useful and leakage fluxes in a transformer
655(2)
29.8 Leakage flux responsible for the inductive reactance of a transformer
657(1)
29.9 Methods of reducing leakage flux
657(1)
29.10 Equivalent circuit of a transformer
658(1)
29.11 Phasor diagram for a transformer on load
659(1)
29.12 Approximate equivalent circuit of a transformer
660(1)
29.13 Simplification of the approximate equivalent circuit of a transformer
661(1)
29.14 Voltage regulation of a transformer
662(4)
29.15 Efficiency of a transformer
666(1)
29.16 Condition for maximum efficiency of a transformer
667(2)
29.17 Open--circuit and short--circuit tests on a transformer
669(1)
29.18 Calculation of efficiency from the open--circuit and short--circuit tests
670(1)
29.19 Calculation of the voltage regulation from the short--circuit test
670(2)
29.20 Three--phase core--type transformers
672(1)
29.21 Auto--transformers
672(1)
29.22 Current transformers
673(1)
29.23 Waveform of the magnetizing current of a transformer
674(1)
29.24 Air--corcd transformer
675(5)
Summary of important formulae
676(1)
Terms and concepts
676(4)
30 Introduction to Machine Theory
680(22)
30.1 The role of the electrical machine
681(1)
30.2 Conversion process in a machine
681(2)
30.3 Methods of analysis of machine performance
683(1)
30.4 Magnetic field energy
684(1)
30.5 Simple analysis of force of alignment
685(1)
30.6 Energy balance
686(3)
30.7 Division of converted energy and power
689(1)
30.8 Force of alignment between parallel magnetized surfaces
690(3)
30.9 Rotary motion
693(1)
30.10 Reluctance motor
694(2)
30.11 Doubly excited rotating machines
696(6)
Summary of important formulae
698(1)
Terms and concepts
698(4)
31 AC Synchronous Machine Windings
702(13)
31.1 General arrangement of synchronous machines
703(1)
31.2 Types of rotor construction
703(2)
31.3 Stator windings
705(3)
31.4 Expression for the e.m.f. of a stater winding
708(1)
31.5 Production of rotating magnetic flux by three--phase currents
708(2)
31.6 Analysis of the resultant flux due to three--phase currents
710(2)
31.7 Reversal of direction of rotation of the magnetic flux
712(3)
Summary of important formulae
713(1)
Terms and concepts
713(2)
32 Characteristics of AC Synchronous Machines
715(11)
32.1 Armature reaction in a three--phase synchronous generator
716(1)
32.2 Voltage regulation of a synchronous generator
717(1)
32.3 Synchronous impedance
718(3)
32.4 Parallel operation of synchronous generators
721(2)
32.5 Three--phase synchronous motor: principle of action
723(1)
32.6 Advantages and disadvantages of the synchronous motor
723(3)
Terms and concepts
724(2)
33 Induction Motors
726(31)
33.1 Principle of action
727(1)
33.2 Frequency of rotor e.m.f. and current
728(1)
33.3 The equivalent circuit of the three--phase induction motor
729(6)
33.4 Mechanical power and torque
735(4)
33.5 The torque/speed curve and effect of rotor resistance
739(2)
33.6 Experimental tests to obtain motor equivalent circuit parameters
741(5)
33.7 Starring torque
746(1)
33.8 Starting of a three--phase induction motor fitted with a cage rotor
747(1)
33.9 Comparison of cage and slip--ring rotors
748(1)
33.10 Braking
748(1)
33.11 Single--phase induction motors
749(2)
33.12 Capacitor--run induction motors
751(1)
33.13 Split--phase motors
752(1)
33.14 Shaded--pole motors
752(1)
33.15 Variable speed operation of induction motors
753(4)
Summary of important formulae
754(1)
Terms and concepts
754(3)
34 Electrical Energy Systems
757(49)
34.1 Energy units
758(1)
34.2 Forms of energy
758(1)
34.3 Energy conversion and quality of energy
759(3)
34.4 Demand for electricity and the National Grid
762(4)
34.5 Generating plant
766(6)
34.6 Nuclear power
772(1)
34.7 Renewable energy
773(24)
34.8 Distributed/Embedded generation
797(1)
34.9 Demand management
798(4)
34.10 The cost of generating electricity
802(4)
Summary of important formulae
803(1)
Terms and concepts
804(2)
35 Power Systems
806(34)
35.1 System representation
807(1)
35.2 Power system analysis
808(1)
35.3 Voltage--drop calculations
809(3)
35.4 The medium--length line
812(5)
35.5 The per--unit method
817(1)
35.6 Per--unit impedance
818(1)
35.7 Base power -- SB or MV AB
819(4)
35.8 Faults in a power system
823(3)
35.9 Representation of a grid connection
826(1)
35.10 Transmission Fine effects
827(13)
Summary of important formulae
835(1)
Terms and concepts
836(4)
36 Direct-current Machines
840(14)
36.1 General arrangement of a d.c. machine
841(1)
56.2 Double--layer drum windings
842(3)
36.3 Calculation of e.m.f. generated in an armature winding
845(1)
36.4 Armature reaction
846(3)
36.5 Armature reaction in a d.c. motor
849(1)
36.6 Commutation
850(4)
Summary of important formulae
852(1)
Terms and concepts
852(2)
37 Direct-current Motors
854(17)
37.1 Armature and field connections
855(1)
37.2 A d.c. machine as generator or motor
855
37.3 Speed of a motor
857(21)
37.4 Torque of an electric motor
858(2)
37.5 Speed characteristics of electric motors
860(1)
37.6 Torque characteristics of electric motors
861(1)
37.7 Speed control of d.c. motors
862(9)
Summary of important formulae
868(1)
Terms and concepts
868(3)
38 Control System Motors
871(9)
38.1 Review
872(1)
38.2 Motors for regulators
872(1)
38.3 RPC system requirements
873(1)
38.4 Geneva cam
874(1)
38.5 The stepping (or stepper) motor
874(1)
38.6 The variable--reluctance motor
875(1)
38.7 The hybrid stepping motor
876(2)
38.8 Drive circuits
878(2)
Terms and concepts
879(1)
39 Motor Selection and Efficiency
880(19)
39.1 Selecting a motor
881(1)
39.2 Speed
881(1)
39.3 Power rating and duty cycles
882(1)
39.4 Load torques
883(1)
39.5 The motor and its environment
884(1)
39.6 Machine efficiency
885(1)
39.7 Hysteresis
886(1)
39.8 Current--ring theory of magnetism
886(2)
39.9 Hysteresis loss
888(3)
39.10 Losses in motors and generators
891(2)
39.11 Efficiency of a d.c. motor
893(1)
39.12 Approximate condition for maximum efficiency
894(1)
39.13 Determination of efficiency
894(5)
Terms and concepts
897(2)
40 Power Electronics
899(18)
40.1 Introductory
900(1)
40.2 Thyristor
900(2)
40.3 Some thyristor circuits
902(2)
40.4 Limitations to thyristor operation
904(1)
40.5 The thyristor in practice
904(1)
40.6 The fully controlled a.c./d.c. converter
904(1)
40.7 AC/DC inversion
905(3)
40.8 Switching devices in inverters
908(1)
40.9 Three-phase rectifier networks
909(2)
40.10 The three--phase fully controlled converter
911(1)
40.11 Inverter--fed induction motors
911(1)
40.12 Soft--starting induction motors
912(1)
40.13 DC to DC conversion switched--mode power supplies
913(4)
Summary of important formulae
915(1)
Terms and concepts
916(1)
Section 4 Measurements, Sensing and Actuation
917(40)
41 Control Systems, Sensors and Actuators
919(16)
41.1 Introduction
920(1)
41.2 Open--loop and closed--loop systems
921(1)
41.3 Damping
922(2)
41.4 Components of a control system
924(1)
41.5 Transfer function
925(1)
41.6 Regulators and servomechanisms
926(2)
41.7 Types of control
928(1)
41.8 Sensors
929(3)
41.9 Actuators
932(3)
Terms and concepts
933(2)
42 Electronic Measuring Instruments and Devices
935(22)
42.1 Introduction to analogue and electronic instruments
936(1)
42.2 Digital electronic voltmeters
937(2)
42.3 Digital electronic ammeters and wattmeters
939(1)
42.4 Graphical display devices
939(1)
42.5 The vacuum diode
940(1)
42.6 The vacuum triode
941(1)
42.7 Modern applications of vacuum--tube technology
942(5)
42.8 Cathode--ray rube
947(1)
42.9 Deflecting systems of a cathode--ray tube
948(1)
42.10 Cathode--ray oscilloscope
948(2)
42.11 Digital oscilloscope
950(1)
42.12 Use of the oscilloscope in waveform measurement
951(1)
42.13 Oscilloscope connection
952(5)
Terms and concepts
955(2)
Appendix: Symbols, Abbreviations, Definitions and Diagrammatic Symbols 957(5)
Answers to Exercises 962(10)
Index 972
Dr John Hiley and Dr Keith Brown are both lecturers in the Department of Electrical, Electronic and Computer Engineering at Heriot-Watt University.

 

The late Edward Hughes was Vice Principal and Head of the Engineering Department, Brighton College of Technology. He was a fellow of Heriot-Watt University.

 

The late Ian McKenzie Smith was formerly Deputy Principal, Stow College, Glasgow.