Atjaunināt sīkdatņu piekrišanu

E-grāmata: Human-AI Teaming: State-of-the-Art and Research Needs

  • Formāts: 140 pages
  • Izdošanas datums: 22-Feb-2022
  • Izdevniecība: National Academies Press
  • Valoda: eng
  • ISBN-13: 9780309270359
Citas grāmatas par šo tēmu:
  • Formāts - EPUB+DRM
  • Cena: 31,30 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 140 pages
  • Izdošanas datums: 22-Feb-2022
  • Izdevniecība: National Academies Press
  • Valoda: eng
  • ISBN-13: 9780309270359
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Although artificial intelligence (AI) has many potential benefits, it has also been shown to suffer from a number of challenges for successful performance in complex real-world environments such as military operations, including brittleness, perceptual limitations, hidden biases, and lack of a model of causation important for understanding and predicting future events. These limitations mean that AI will remain inadequate for operating on its own in many complex and novel situations for the foreseeable future, and that AI will need to be carefully managed by humans to achieve their desired utility.



Human-AI Teaming: State-of-the-Art and Research Needs examines the factors that are relevant to the design and implementation of AI systems with respect to human operations. This report provides an overview of the state of research on human-AI teaming to determine gaps and future research priorities and explores critical human-systems integration issues for achieving optimal performance.

Table of Contents



Front Matter Summary 1 Introduction 2 Human-AI Teaming Methods and Models 3 Human-AI Teaming Processes and Effectiveness 4 Situation Awareness in Human-AI Teams 5 AI Transparency and Explainability 6 Human-AI Team Interaction 7 Trusting AI Teammates 8 Identification and Mitigation of Bias in Human-AI Teams 9 Training Human-AI Teams 10 HSI Processes and Measures of Human-AI Team Collaboration and Performance 11 Conclusions References Appendixes Appendix A: Committee Biographies Appendix B: Human-AI Teaming Workshop Agenda Appendix C: Definitions
Summary 1(4)
1 Introduction
5(6)
Study Background and Charge to the Committee
6(1)
Committee Approach
7(1)
Automation and AI
7(1)
Limits of AI
8(1)
Effect of AI on Human Performance
9(1)
Report Structure and Summary
10(1)
2 Human-Ai Teaming Methods And Models
11(8)
Teams
11(1)
Human-AI Teaming Models and Perspectives
12(2)
Should Humans Team with AI?
14(2)
Improved Models for Human-AI Teams
16(1)
Key Challenges and Research Gaps
17(1)
Research Needs
17(1)
Summary
18(1)
3 Human-Ai Teaming Processes And Effectiveness
19(6)
What Does It Mean for AI to Be a Teammate?
19(1)
Processes and Characteristics of Effective Human-AI Teams
20(3)
Team Heterogeneity
20(1)
Shared Cognition
21(1)
Communication and Coordination
22(1)
Social Intelligence
22(1)
Other Features of Effective Teams
23(1)
Key Challenges and Research Gaps
23(1)
Research Needs
23(1)
Summary
24(1)
4 Situation Awareness In Human-Ai Teams
25(6)
Situation Awareness in Multi-Domain Operations
25(2)
Key Challenges and Research Gaps
27(1)
Research Needs
27(1)
Shared SA in Human-AI Teams
27(3)
Key Challenges and Research Gaps
29(1)
Research Needs
29(1)
Summary
30(1)
5 Ai Transparency And Explainability
31(10)
Display Transparency
34(2)
Key Challenges and Research Gaps
35(1)
Research Needs
35(1)
AI Explainability
36(4)
Key Challenges and Research Gaps
37(1)
Research Needs
38(2)
Summary
40(1)
6 Human-Ai Team Interaction
41(8)
Level of Automation
41(3)
Key Challenges and Research Gaps
44(1)
Research Needs
44(1)
AI Dynamics and Temporality
44(2)
Key Challenges and Research Gaps
45(1)
Research Needs
45(1)
Granularity of Control
46(1)
Key Challenges and Research Gaps
46(1)
Research Needs
46(1)
Other Human-AI Team Interaction Issues
47(1)
Key Challenges and Research Gaps
47(1)
Research Needs
47(1)
Summary
48(1)
7 Trusting AI Teammates
49(8)
Trust Frameworks Past and Present
49(2)
Trusting AI in Complex Work Environments
51(1)
Key Challenges and Research Gaps
51(1)
Research Needs
52(3)
Summary
55(2)
8 Identification And Mitigation Of Bias In Human-Ai Teams
57(6)
Human Biases
57(1)
AI Biases
57(2)
Human-AI Team Bias
59(1)
Key Challenges and Research Gaps
60(1)
Research Needs
60(1)
Summary
61(2)
9 Training Human-Ai Teams
63(6)
Human-Human Team Training to Inform Human-AI Team Training
63(2)
Strategies for Team Training
64(1)
The Use of Simulation
64(1)
Training Content: Taskwork and Teamwork
65(1)
Key Challenges and Research Gaps
65(1)
Research Needs
66(1)
Summary
67(2)
10 Hsi Processes And Measures Of Human-Ai Team Collaboration And Performance
69(16)
Taking an HSI Perspective in Human-AI Team Design and Implementation
69(2)
Key Challenges and Research Gaps
70(1)
Research Needs
70(1)
Requirements for Research in Human-AI Team Development
71(1)
Key Challenges and Research Gaps
71(1)
Research Needs
71(1)
Research Team Competencies
72(1)
Key Challenges and Research Gaps
73(1)
Research Needs
73(1)
HSI Considerations for Human-AI Teams
73(2)
Key Challenges and Research Gaps
75(1)
Research Needs
75(1)
Testing, Evaluation, Verification, and Validation of Human-AI Teams
75(2)
Key Challenges and Research Gaps
77(1)
Research Needs
77(1)
Human-AI Team Research Testbeds
77(1)
Key Challenges and Research Gaps
78(1)
Research Needs
78(1)
Human-AI Team Measures and Metrics
78(3)
Key Challenges and Research Gaps
80(1)
Research Needs
80(1)
Agile Software Development and HSI
81(2)
Key Challenges and Research Gaps
82(1)
Research Needs
82(1)
Summary
83(2)
11 Conclusions
85(6)
References 91(24)
Appendixes
A Committee Biographies 115(4)
B Human-AI Teaming Workshop Agenda 119(2)
C Definitions 121