Atjaunināt sīkdatņu piekrišanu

E-grāmata: Human Factors in Intelligent Vehicles

  • Formāts: 174 pages
  • Izdošanas datums: 01-Sep-2022
  • Izdevniecība: River Publishers
  • ISBN-13: 9781000793574
  • Formāts - PDF+DRM
  • Cena: 97,17 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 174 pages
  • Izdošanas datums: 01-Sep-2022
  • Izdevniecība: River Publishers
  • ISBN-13: 9781000793574

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Human Factors in Intelligent Vehicles addresses issues related to the analysis of human factors in the design and evaluation of intelligent vehicles for a wide spectrum of applications and over different dimensions. To commemorate the 8th anniversary of the IEEE ITS Workshop on Human Factors some recent works of authors active in the automotive human factors community have been collected in this book. Enclosed here are extended versions of papers and tutorials that were presented at the IEEE ITSS Workshop on “Human Factors in Intelligent Vehicles” and also included is additional deeper analysis along with detailed experimental and simulation results. The contributors cover autonomous vehicles as well as the frameworks for analyzing automation, modelling and methods for road users’ interaction such as intelligent user interfaces, including brain-computer interfaces and simulation and analysis tools related to human factors.

Human Factors in Intelligent Vehicles addresses issues related to theanalysis of human factors in the design and evaluation of intelligent vehiclesfor a wide spectrum of applications and over different dimensions. Thecontributors cover autonomous vehicles as well as the frameworks for analyzingautomation, modelling and methods for road users’ interaction such asintelligent user interfaces, including brain-computer interfaces and simulationand analysis tools related to human factors.
Preface xi
List of Contributors
xv
List of Figures
xvii
List of Tables
xxi
List of Abbreviations
xxiii
1 Continuous Game Theory Pedestrian Modelling Method for Autonomous Vehicles
1(20)
Fanta Camara
Serhan Cosar
Nicola Bellotto
Natasha Merat
Charles W. Fox
1.1 Introduction
2(2)
1.2 Related Work
4(3)
1.2.1 Pedestrian Crossing Behaviour
4(1)
1.2.2 Game Theory
5(2)
1.2.3 Pedestrian Tracking
7(1)
1.3 Methods
7(6)
1.3.1 Human Experiment
7(2)
1.3.2 Pedestrian Detection and Tracking
9(2)
1.3.3 Sequential Chicken Model
11(1)
1.3.4 Gaussian Process Parameter Posterior Analysis
12(1)
1.4 Results
13(2)
1.5 Discussion
15(1)
Acknowlegdment
15(1)
References
16(5)
2 The Interface Challenge for Partially Automated Vehicles: How Driver Characteristics Affect Information Usage Over Time
21(20)
Arun Ulahannan
Paul Jennings
Simon Thompson
Stewart Birrell
2.1 Introduction
22(1)
2.2 Method
23(5)
2.2.1 Study Design
23(1)
2.2.2 Participants
23(1)
2.2.3 Interface Design
24(2)
2.2.4 Driving Scenario
26(1)
2.2.5 Procedure
26(2)
2.2.6 Data Analysis
28(1)
2.2.6.1 Trust (Parts 1 and 2)
28(1)
2.2.6.2 DBQ (Part 1 only)
28(1)
2.2.6.3 DALI (Part 2 only)
28(1)
2.3 Results
28(5)
2.3.1 Trust Results (Parts 1 and 2)
29(1)
2.3.2 DBQ Results (Part 1 only)
29(1)
2.3.3 DALI Results (Part 2 only)
30(1)
2.3.4 Fixations
30(1)
2.3.4.1 Fixations and Trust (Parts 1 and 2)
30(1)
2.3.4.2 Fixations and DBQ (Part 1 only)
30(1)
2.3.4.3 Fixations and DALI (Part 2 only)
30(2)
2.3.5 Between trust, DBQ and DALI
32(1)
2.3.5.1 Trust and DBQ (Part 1 only)
32(1)
2.3.5.2 Trust and DALI (Part 2 only)
33(1)
2.4 Discussion
33(3)
2.4.1 Fixations
33(1)
2.4.1.1 Fixations and Trust (Parts 1 and 2)
33(1)
2.4.1.2 Fixations and DBQ (Part 1 only)
34(1)
2.4.2 Fixations and DALI (Part 2 only)
34(1)
2.4.3 Between Trust, DBQ and DALI
35(1)
2.4.3.1 Trust and DBQ (Part 1 only)
35(1)
2.4.3.2 Trust and DALI (Part 2 only)
36(1)
2.5 Conclusion
36(1)
References
37(4)
3 A CNN Approach for Bidirectional Brainwave Controller for Intelligent Vehicles
41(18)
Armando Astudillo Olalla
Fernando Garcia Fernandez
3.1 Introduction
41(6)
3.1.1 Human Brain
42(1)
3.1.2 Brainwaves Features
43(1)
3.1.3 BCI Research
44(3)
3.2 Setup Overview
47(1)
3.2.1 Brainwave Sensor
47(1)
3.2.2 Vehicle Platform
47(1)
3.3 Methodology
48(4)
3.3.1 Data Reading
48(1)
3.3.2 Data Filtering
48(1)
3.3.3 Input Processing
48(2)
3.3.4 NN Classifier
50(1)
3.3.5 CNN Classifier
51(1)
3.3.5.1 MindNet.1
51(1)
3.3.5.2 MindNet-2
52(1)
3.4 Experimental Works and Results
52(3)
3.4.1 General Classifier
53(1)
3.4.2 Individual Classifier
54(1)
3.4.3 Computational Time
55(1)
3.5 Conclusion and Future Work
55(1)
References
56(3)
4 A-RCRAFT Framework for Analysing Automation: Application to SAE J3016 Levels of Driving Automation
59(24)
Elodie Bouzekri
Celia Martinie
Philippe Palanque
4.1 Introduction
59(2)
4.2 A Framework for Automation Analysis: A-RCRAFT
61(8)
4.2.1 Allocation of Functions and Tasks
62(2)
4.2.2 Allocation of Resources
64(2)
4.2.3 Allocation of Control Transitions
66(1)
4.2.4 Allocation of Responsibility
67(1)
4.2.5 Allocation of Authority
68(1)
4.3 Qualitative Analysis of SAE J3016 Levels of Driving Automation with A-RCRAFT
69(8)
4.3.1 Scope of the SAE J3016 for the Human Tasks and System Functions
70(1)
4.3.2 Decomposition of Levels of Driving Automation According to A-RCRAFT
70(1)
4.3.3 Results of the Analysis and Benefits from Using A-RCRAFT
71(6)
4.4 Conclusion
77(1)
References
78(5)
5 Autonomous Vehicles: Vulnerable Road User Response to Visual Information Using an Analysis Framework for Shared Spaces
83(26)
Walter Morales Alvarez
Cristina Olaverri-Monreal
5.1 Introduction
83(3)
5.2 Field Test Description
86(3)
5.3 Analyzing Algorithm
89(7)
5.3.1 Pedestrian Detection and Pose Estimation
89(1)
5.3.2 Distance Estimation via Stereo Cameras
90(1)
5.3.3 Pedestrian tracking with DeepSort
91(1)
5.3.4 Face Detection
92(1)
5.3.5 Velocity
93(1)
5.3.6 Classification
93(1)
5.3.7 Behavior Segmentation
94(2)
5.4 Data Analysis
96(1)
5.5 Results
96(5)
5.5.1 Algorithm Result
96(3)
5.5.2 Field Tests Results
99(2)
5.6 Conclusion, Discussion, and Future Work
101(2)
Acknowledgment
103(1)
References
103(6)
6 Intelligent Vehicles and Older Drivers
109(16)
Joonwoo Son
Myoungouk Park
6.1 Introduction
109(1)
6.2 Age-related Limitations in Driving
110(2)
6.2.1 Vision and Audition
110(1)
6.2.2 Cognitive Function
111(1)
6.2.3 Physical Function
112(1)
6.3 How Can Intelligent Vehicles Help Older Drivers?
112(1)
6.4 Intelligent Vehicles and Older Driver
113(5)
6.4.1 Research Methods
114(1)
6.4.2 Age Differences in the Acceptance of Assistive Technologies
115(1)
6.4.3 Age Differences in Effectiveness of FCW
115(2)
6.4.4 Age Differences in Effectiveness of LDW
117(1)
6.5 HMI Design for Older Drivers
118(2)
6.5.1 Visual HMI Design
118(1)
6.5.2 Audible HMI Design
119(1)
6.5.3 Multiple-task Design
119(1)
6.6 Conclusions
120(1)
References
120(5)
7 Integration Model of Multi-Agent Architectures for Data Fusion-Based Active Driving System
125(18)
Oscar Sipele
Agapito Ledezma
Araceli Sanchis
7.1 Introduction
126(1)
7.2 Related Work
127(1)
7.3 Deployment Architecture
128(2)
7.4 Materials and Methods
130(6)
7.4.1 Materials
130(1)
7.4.2 Deployment Details
131(3)
7.4.3 Driving Trail Designing
134(2)
7.5 Results
136(3)
7.6 Discussion
139(1)
Acknowledgment
140(1)
References
140(3)
Index 143(2)
About the Editors 145
Cristina Olaverri-Monreal, Fernando Garcķa-Fernįndez, Rosaldo J. F. Rossetti