nav atļauts
nav atļauts
Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).
Nepieciešamā programmatūra
Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)
Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)
Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.
Foreword xxiii
Preface xxv
Acknowledgement xxvii
Part I: Advanced Patient Care with HMI 1
1 Introduction to Human-Machine Interface 3
Shama Mujawar, Aarohi Deshpande, Aarohi Gherkar, Samson Eugin Simon and Bhupendra Prajapati
1.1 Introduction 4
1.2 Types of HMI 6
1.3 Transformation of HMI 7
1.4 Importance and COVID Relevance With HMI 9
1.5 Applications 11
1.6 Challenges 18
1.7 Conclusion and Future Prospects 19
2 Improving Healthcare Practice by Using HMI Interface 25
Vaibhav Verma, Vivek Dave and Pranay Wal
2.1 Background of Human-Machine Interaction 26
2.2 Introduction 26
2.3 Evolution of HMI Design 27
2.4 Anatomy of Human Brain 28
2.5 Signal Associated With Brain 31
2.6 HMI Signal Processing and Acquisition Methods 32
2.7 Human-Machine Interface--Based Healthcare System 36
2.8 Working Model of HMI 38
2.9 Challenges and Limitations of HMI Design 40
2.10 Role of HMI in Healthcare Practice 40
2.11 Application of HMI Technology in Medical Fields 42
2.12 Conclusion and Future Perspective 51
3 Human-Machine Interface and Patient Safety 59
Arun Kumar Singh and Rishabha Malviya
3.1 Introduction 59
3.2 Detecting Anesthesia-Related Drug Administration Errors and Predicting Their Impact 60
3.3 Systematic Approaches to Improve Patient Safety During Anesthesia 69
3.4 The Triumph of Software 73
3.5 Environments that Audit Themselves 77
3.6 New Risks and Dangers 77
3.7 Conclusion
4 Human-Machine Interface Improving Quality of Patient Care 89
Rishav Sharma and Rishabha Malviya
4.1 Introduction 90
4.2 An Advanced Framework for Human-Machine Interaction 92
4.3 Human--Computer Interaction (HCI) 93
4.4 Multimodal Processing 95
4.5 Integrated Multimodality at a Lower Order (Stimulus Orientation) 96
4.6 Higher-Order Multimodal Integration (Perceptual Binding) 96
4.7 Gains in Performance From Multisensory Stimulation 97
4.8 Amplitude Envelope and Alarm Design 98
4.9 Recent Trends in Alarm Tone Design for Medical Devices 99
4.10 Percussive Tone Integration in Multimodal User Interfaces 99
4.11 Software in Hospitals 100
4.12 Brain--Machine Interface (BCI) Outfit 101
4.13 BCI Sensors and Techniques 101
4.14 New Generation Advanced Human-Machine Interface 104
4.15 Conclusion 105
5 Smart Patient Engagement through Robotics 115
Rakhi Mohan, A. Arun Prakash, Uma Devi N., Anjali Sharma S., Aiswarya Babu N. and Thennarasi P.
5.1 Introduction 116
5.2 Theoretical Framework 126
5.3 Objectives 127
5.4 Research Methodology 127
5.5 Primary and Secondary Data 127
5.6 Factors for Consideration 127
5.7 Robotics Implementation 128
5.8 Tools for Analysis 129
5.9 Analysis of Patient's Perception 129
5.10 Review of Literature 129
5.11 Hospitals Considered for the Study (Through Indirect Sources) 131
5.12 Analysis and Interpretation 133
5.13 Conclusion 153
6 Accelerating Development of Medical Devices Using Human-Machine Interface 161
Dipanjan Karati, Swarupananda Mukherjee, Souvik Roy and Bhupendra G. Prajapati
6.1 Introduction 162
6.2 HMI Machineries 164
6.3 Brain--Computer Interface and HMI 165
6.4 HMI for a Mobile Medical Exoskeleton 166
6.5 Human Artificial Limb and Robotic Surgical Treatment by HMI 167
6.6 Cognitive Enhancement by HMI 170
6.7 Soft Electronics for the Skin Using HMI 171
6.8 Safety Considerations 173
6.9 Conclusion 174
7 The Role of a Human-Machine Interaction (HMI) System on the Medical Devices 183
Zahra Alidousti Shahraki and Mohsen Aghabozorgi Nafchi
7.1 Introduction 184
7.2 Machine Learning for HCI Systems 185
7.3 Patient Experience 187
7.4 Cognitive Science 190
7.5 HCI System Based on Image Processing 192
7.6 Blockchain 201
7.7 Virtual Reality 203
7.8 The Challenges in Designing HCI Systems for Medical Devices 206
7.9 Conclusion 207
8 Human-Machine Interaction in Leveraging the Concept of Telemedicine 211
Dipa K. Israni and Nandita S. Chawla
8.1 Introduction 212
8.2 Innovative Development in HMI Technologies and Its Use in Telemedicine 213
8.3 Advantages of Utilizing HMI in Healthcare for Telemedicine 230
8.4 Obstacles to the Utilize, Accept, and Implement HMI in Telemedicine 234
8.5 Conclusions 239
9 Making Hospital Environment Friendly for People: A Concept of HMI 247
Rihana Begum P., Badrud Duza Mohammad, Saravana Kumar A. and Muhasina K.M.
9.1 Introduction 248
9.2 A Scenario for Ubiquitous Computing and Ambient Intelligence 249
9.3 Emergence of Ambient Intelligence 250
9.4 Framework for Advanced Human-Machine Interfaces 251
9.5 Brain Computer Interface (BCI) 252
9.6 Development in MHI Technologies and Their Applications 257
9.7 Techniques of Signal Acquisition and Processing Applied to HMI 258
9.8 Hospital-Friendly Environment for Patients 260
9.9 Applications of HMI for Patient-Friendly Hospital Environment 263
9.10 Conclusion 270
Part II: Emerging Application and Regulatory Prospects of HMI in Healthcare 279
10 HMI: Disruption in the Neural Healthcare Industry 281
Preetam L. Nikam, Amol U. Gayke, Pavan S. Avhad, Rahul B. Bhabad and Rishabha Malviya
10.1 Introduction 282
10.2 Stimulation of Muscles 283
10.3 Cochlear Implants 283
10.4 Peripheral Nervous System Interaction 284
10.5 Sleeve Electrodes 285
10.6 Flat-Interfaced Nerve Electrodes 287
10.7 Transverse and Longitudinal Intrafascicular Electrode (LIFE and TIME) 287
10.8 Multi-Channel Arrays That Penetrate 288
10.9 Spinal Cord Stimulation and Central Nervous System Interaction 289
10.10 Computer--Brain Interfaces 290
10.11 Conclusion 291
11 Dynamics of EHR in M-Healthcare Application 295
Eva Kaushik and Rohit Kaushik
11.1 Introduction 296
11.2 Background Related Work 299
11.3 Methodology 300
11.4 Tools and Technologies 303
11.5 Limitations 304
11.6 Future Scope 305
11.7 Discussion 306
11.8 Conclusion 308
12 Role of Human-Machine Interface in the Biomedical Device Development to Handle COVID-19 Pandemic Situation in an Efficient Way 311
Soma Datta and Nabendu Chaki
12.1 Introduction: Background and Driving Forces 312
12.2 Methods 315
12.3 Results 325
12.4 Conclusion 325
13 Role of HMI in the Drug Manufacturing Process 329
Biswajit Basu, Kevinkumar Garala and Bhupendra G. Prajapati
13.1 Introduction 330
13.2 Types of HMI 333
13.3 Advantages and Disadvantages of HMI 334
13.4 Roles of HMI in the Pharmaceutical Manufacturing Process 339
13.5 Common Applications for Human-Machine Interfaces 343
13.6 Healthcare System-Based Human--Computer Interaction 345
13.7 Performance Test of Healthcare System Based on HCI 349
13.8 Human-Machine Interface for Healthcare and Rehabilitation 349
13.9 Human-Machine Interface for Research Reactor: Instrumentation and Control System 351
13.10 Future Scope of Human-Machine Interface (HMI) 352
13.11 Conclusion 353
14 Breaking the Silence: Brain--Computer Interface for Communication 357
Preetam L. Nikam, Sheetal Wagh, Sarika Shinde, Abhishek Mokal, Smita Andhale, Prathmesh Wagh, Vivek Bhosale and Rishabha Malviya
14.1 Introduction 358
14.2 Survey of BCI 359
14.3 Techniques of BCI 361
14.4 BCI Components 362
14.5 BCI Signal Acquisition Methods 364
14.6 BCI Invasion 364
14.7 BCI With Limited Invasion 364
14.8 BCI Not Invasive 364
14.9 BCI Applications 365
14.10 BCI Healthcare Challenges 367
14.11 Conclusion 370
15 Regulatory Perspective: Human-Machine Interfaces 375
Artiben Patel, Ravi Patel, Rakesh Patel, Bhupendra Prajapati and Shivani Jani
15.1 Introduction 376
15.2 Why are Regulations Needed? 377
15.3 US Regulatory Perspective 379
15.4 Conclusion 407
16 Towards the Digitization of Healthcare Record Management 411
Shivani Patel, Bhavinkumar Gayakvad, Ravisinh Solanki, Ravi Patel and Dignesh Khunt
16.1 Introduction 412
16.2 Digital Health Records: Concept and Organization 416
16.3 Mechanism and Operation of Digital Health Record 419
16.4 Benefits of Digital Health Records 426
16.5 Limitations of Digital Health Records 428
16.6 Risk & Problems Associated With the System 431
16.7 Future Benefits 432
16.8 Miscellaneous 434
16.9 Conclusion 445
17 Intelligent Healthcare Supply Chain 449
Chirag Kalaria, Shambhavi Singh and Bhupendra G. Prajapati
17.1 Introduction 450
17.2 Supply Chain -- Method Networking? 451
17.3 Healthcare Supply Chain and Steps Involved 451
17.4 Importance of HSC 452
17.5 Risks and Complexities Affecting the Globally Distributed HSC 453
17.6 Technologies Come to Aid to Build an Intelligent HSC 457
17.7 Blockchain 460
17.8 Robotics 461
17.9 Cloud Computing 463
17.10 Big Data Analytics (BDA) 465
17.11 Industry 4.0 465
17.12 Internet of Things (IoT) 467
17.13 Digital Twins 469
17.14 Supply Chain Control Tower 470
17.15 Predictive Maintenance 472
17.16 A Digital Transformation Roadmap 473
17.17 Prerequisite for Designing Intelligent HSC 475
17.18 HMI--Usage in HSC Management 476
17.19 HMI--A Face of the Supply Chain Control Tower 477
17.20 The Intelligent Future of the Healthcare Industry 478
17.21 Conclusion 480
References 481
Index 483