Atjaunināt sīkdatņu piekrišanu

E-grāmata: Human Missions to Mars: Enabling Technologies for Exploring the Red Planet

  • Formāts: PDF+DRM
  • Sērija : Astronautical Engineering
  • Izdošanas datums: 31-Oct-2015
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783319222493
  • Formāts - PDF+DRM
  • Cena: 237,34 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Sērija : Astronautical Engineering
  • Izdošanas datums: 31-Oct-2015
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783319222493

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

A mission to send humans to explore the surface of Mars has been the

ultimate goal of planetary exploration since the 1950s, when von Braun

conjectured a flotilla of 10 interplanetary vessels carrying a crew of at

least 70 humans. Since then, more than 1,000 studies were carried out

on human missions to Mars, but after 60 years of study, we remain in the





early planning stages. The second edition of this book now includes an

annotated history of Mars mission studies, with quantitative data wherever

possible.

Retained from the first edition, Donald Rapp looks at human missions

to Mars from an engineering perspective. He divides the mission into a

number of stages: Earths surface to low-Earth orbit (LEO); departing from





LEO toward Mars; Mars orbit insertion and entry, descent and landing;

ascent from Mars; trans-Earth injection from Mars orbit and Earth return.

For each segment, he analyzes requirements for candidate technologies.

In this connection, he discusses the status and potential of a wide range

of elements critical to a human Mars mission, including life support

consumables, radiation effects and shielding, microgravity effects, abort





options and mission safety, possible habitats on the Martian surface and

aero-assisted orbit entry decent and landing. For any human mission to

the Red Planet the possible utilization of any resources indigenous to

Mars would be of great value and such possibilities, the use of indigenous

resources is discussed at length. He also discusses the relationship of lunar

exploratio

n to Mars exploration.

Detailed appendices describe the availability of solar energy on the Moon

and Mars, and the potential for utilizing indigenous water on Mars.

The second edition provides extensive updating and additions to the first

edition, including many new figures and tables, and more than 70 new

references, as of 2015.

Recenzijas

This second edition of Donald Rapps book is an impressive, comprehensive, and well-organized work that begins by exploring the history of the planning of human flights to Mars. ... There are three very comprehensive Appendices, which derive full statistical data for collecting solar energy on the Moon and Mars, and the quantities of water to be found on Mars at different localities (including a discussion of the topical slope lineae). A Glossary completes the text. (Richard McKim, The Observatory, Vol. 136 (1253), August, 2016)

1 Why Explore Mars?
1(16)
1.1 Introduction
1(2)
1.2 Robotic Exploration---The Establishment View
3(4)
1.3 The Curmudgeons' View on the Search for Life on Mars
7(2)
1.4 Why Send Humans to Mars?---The Enthusiasts' View
9(4)
1.5 Sending Humans to Mars---The Skeptic's View
13(4)
References
15(2)
2 Planning Space Campaigns and Missions
17(14)
2.1 Campaigns
17(1)
2.2 Planning Space Missions
18(2)
2.3 Architectures
20(3)
2.4 A Mission as a Sequence of Steps
23(4)
2.5 What's Delivered to the Destination?
27(1)
2.6 What's in Low Earth Orbit
28(1)
2.7 What's on the Launch Pad?
29(1)
2.8 IMLEO Requirements for Space Missions
29(2)
References
29(2)
3 60+ Years of Humans to Mars Mission Planning
31(78)
3.1 Von Braun's Vision
32(2)
3.2 Earliest NASA Concepts
34(8)
3.2.1 First Studies
34(1)
3.2.2 Studies in the Early 1960s
34(2)
3.2.3 Nuclear Rocket Development
36(1)
3.2.4 The Boeing Study of 1968
37(5)
3.3 Early Mars Planning Exterior to NASA
42(2)
3.3.1 The Planetary Society and the SAIC Analysis
43(1)
3.3.2 The Case for Mars II
44(1)
3.4 NASA in the Late 1980s
44(6)
3.4.1 LANL
44(1)
3.4.2 Sally Ride Study
45(1)
3.4.3 SAIC
45(1)
3.4.4 Office of Exploration Case Studies (1988)
46(1)
3.4.5 Office of Exploration Case Studies (1989)
47(1)
3.4.6 The Space Exploration Initiative and Its Successors
48(2)
3.4.7 LANL
50(1)
3.5 Independent Studies of the 1990s
50(9)
3.5.1 The Soviets
50(1)
3.5.2 Mars Direct
51(4)
3.5.3 The Mars Society Mission
55(4)
3.6 The Pre-DRM Era
59(2)
3.7 NASA Design Reference Missions 1993--2007
61(27)
3.7.1 Design Reference Mission-1 (DRM-1)
61(12)
3.7.2 Design Reference Mission-3 (DRM-3)
73(3)
3.7.3 Mass Comparisons: DRM-3 and DRM-1
76(2)
3.7.4 ISRU System for DRM-3
78(3)
3.7.5 Design Reference Mission-4 (DRM-4)
81(1)
3.7.6 Dual Landers Mission
81(1)
3.7.7 Design Reference Architecture-5 (DRA-5)
82(3)
3.7.8 Exploration Strategy Workshop (2006)
85(3)
3.8 Other Mars Mission Concepts
88(14)
3.8.1 Team Vision Approach to Space Exploration
88(1)
3.8.2 The MIT Study
89(2)
3.8.3 ESA Concurrent Design Facility Study (2003)
91(2)
3.8.4 HERRO Missions to Mars Using Telerobotic Surface Exploration from Orbit
93(2)
3.8.5 Boeing in the 21st Century
95(2)
3.8.6 Free Return Missions
97(1)
3.8.7 Short Stay Versus Long Stay Missions
98(3)
3.8.8 Architectures Based on Flyby and Free Return Trajectories
101(1)
3.9 Recent NASA Activities
102(7)
References
107(2)
4 Getting There and Back
109(74)
4.1 Propulsion Systems
109(10)
4.1.1 Propellant Requirements for Space Transits
110(3)
4.1.2 The Rocket Equation
113(3)
4.1.3 Dry Mass of Rockets
116(3)
4.2 Trajectory Analysis
119(23)
4.2.1 Rocket Science 101
120(18)
4.2.2 Mars Mission Duration and Propulsion Requirements
138(3)
4.2.3 More Realistic Models
141(1)
4.3 Earth to Low Earth Orbit
142(5)
4.4 Departing from LEO
147(10)
4.4.1 The Δv Requirement
147(3)
4.4.2 Mass Sent Toward Mars
150(1)
4.4.3 Nuclear Thermal Rocket for TMI
150(4)
4.4.4 Solar Electric Propulsion for Orbit Raising
154(3)
4.5 Mars Orbit Insertion
157(4)
4.6 Ascent from the Mars Surface
161(3)
4.7 Trans-Earth Injection from Mars Orbit
164(2)
4.8 Earth Orbit Insertion
166(1)
4.9 Gear Ratios
166(4)
4.9.1 Introduction
166(1)
4.9.2 Gear Ratio Calculations
167(2)
4.9.3 Gear Ratio for Earth Departure
169(1)
4.10 LEO to Mars Orbit
170(3)
4.11 LEO to the Mars Surface
173(2)
4.12 IMLEO for Mars Missions
175(8)
4.12.1 Chemical Propulsion and Aero-Assist
175(2)
4.12.2 Use of Nuclear Thermal Propulsion
177(1)
4.12.3 Use of ISRU
178(2)
References
180(3)
5 Critical Mars Mission Elements
183(90)
5.1 Life Support Consumables
183(11)
5.1.1 Consumable Requirements (Without Recyling)
184(4)
5.1.2 Use of Recycling Systems
188(6)
5.2 Radiation Effects and Shielding Requirements
194(11)
5.2.1 Radiation Sources
194(2)
5.2.2 Definitions and Units
196(1)
5.2.3 Radiation Effects on Humans and Allowable Dose
196(3)
5.2.4 Radiation in Space
199(1)
5.2.5 Radiation Levels in Mars Missions
200(3)
5.2.6 Radiation Summary
203(2)
5.3 Effects of Microgravity
205(11)
5.3.1 Introduction to Generic Effects of Zero g
205(2)
5.3.2 Reviews of Low-g Effects
207(4)
5.3.3 Artificial Gravity
211(4)
5.3.4 NASA Plans for Low-g Effects
215(1)
5.4 Human Factors in Confined Space
216(6)
5.5 Abort Options and Mission Safety
222(7)
5.5.1 Abort Options and Mission Safety in ESAS Lunar Missions
222(1)
5.5.2 Abort Options in Mars Missions
223(5)
5.5.3 Acceptable Risk
228(1)
5.6 Habitats
229(15)
5.6.1 Habitat Design and Human Factors
229(1)
5.6.2 Terrestrial Analogs of Mars Habitats
230(3)
5.6.3 DRM-1 Habitats
233(3)
5.6.4 DRM-3 Habitats
236(1)
5.6.5 Dual Landers Habitat
236(3)
5.6.6 SICSA Habitat Designs
239(5)
5.6.7 Other Habitat Concepts
244(1)
5.7 Aero-Assisted Orbit Insertion and Entry, Descent and Landing
244(29)
5.7.1 Introduction
244(4)
5.7.2 Experience with Robotic Spacecraft
248(6)
5.7.3 Entry Descent and Landing Requirements for Human Missions to Mars
254(10)
5.7.4 Precision Landing
264(2)
5.7.5 Development, Test and Validation Roadmaps
266(3)
References
269(4)
6 In Situ Utilization of Indigenous Resources
273(110)
6.1 Value of ISRU
273(2)
6.2 Lunar ISRU
275(18)
6.2.1 Introduction
275(1)
6.2.2 Ascent Propellants
276(1)
6.2.3 Life Support Consumables
277(1)
6.2.4 Propellants Delivered to LEO from the Moon
278(1)
6.2.5 Propellants Delivered to Lunar Orbit for Descent (and Ascent)
279(1)
6.2.6 Regolith for Radiation Shielding
280(1)
6.2.7 Visionary Concepts
280(3)
6.2.8 Lunar Resources and Processes
283(8)
6.2.9 Cost Analysis for Lunar ISRU
291(2)
6.3 Mars ISRU
293(35)
6.3.1 Introduction
293(1)
6.3.2 Timeline for ISRU on Mars
294(2)
6.3.3 Mars ISRU Products
296(1)
6.3.4 Mars ISRU Processes
296(17)
6.3.5 Power Requirements of a Mars ISRU System
313(6)
6.3.6 Reduction in IMLEO from Use of ISRU in Human Mission to Mars
319(9)
6.4 Fueling Mars-Bound Vehicles from Extraterrestrial
Resources
328(1)
6.4.1 Lunar Resources
328(2)
6.4.2 Value of Lunar Water in LEO
330(2)
6.4.3 Percentage of Water Mined on the Moon Transferred to LEO
332(6)
6.4.4 Near-Earth Object Resources
338(3)
6.5 Lunar Ferry for Lunar Descent Propellants
341(2)
6.6 Staging, Assembly and Refueling in Near-Earth Space
343(9)
6.6.1 Orbiting Fuel Depots
343(7)
6.6.2 On-Orbit Staging
350(2)
6.7 Transporting Hydrogen to Mars
352(31)
6.7.1 Terrestrial Versus Space Applications
352(4)
6.7.2 Storage of Hydrogen in Various Physical and Chemical States
356(11)
6.7.3 Boil-off in Space
367(8)
6.7.4 Transporting Hydrogen to Mars and Storing It There
375(3)
6.7.5 Summary and Conclusions
378(1)
References
378(5)
7 Why the NASA Approach Will Likely Fail to Send Humans to Mars for Many Decades to Come
383(38)
7.1 The Moon-Mars Connection
383(7)
7.1.1 Differences Between Lunar and Mars Missions
383(2)
7.1.2 The Moon as a Means of Risk Reduction for Mars
385(2)
7.1.3 ISRU as a Stepping Stone from Moon to Mars
387(3)
7.2 Characteristics of the Mars Campaign
390(1)
7.3 Destination-Driven Versus Constituency-Driven Programs
391(1)
7.4 Need for New Technology
392(1)
7.5 NASA Technology Roadmaps
393(1)
7.6 Space Science Enterprise (SSE)
394(6)
7.6.1 SSE Scope of Technology
394(5)
7.6.2 Lead Centers
399(1)
7.6.3 SSE Technology Summary
400(1)
7.7 Human Exploration Technology
400(3)
7.7.1 Technology for Human Exploration at NASA
400(1)
7.7.2 Dramatic Changes in the Last Decade
401(2)
7.8 Future Prospects
403(13)
7.8.1 Constraints
403(1)
7.8.2 Clarifying Mars Mission Options
404(2)
7.8.3 Fundamental Needs
406(10)
7.9 Does NASA HEO Have the Needed Mentality?
416(1)
7.10 Conclusions
417(4)
References
420(1)
Appendix A Solar Energy on the Moon 421(22)
Appendix B Solar Energy on Mars 443(52)
Appendix C Water on Mars 495(72)
Glossary 567(8)
Index 575