Preface |
|
xiii | |
Acknowledgments |
|
xv | |
|
|
1 | (6) |
|
1.1 What is predictive dynamics? |
|
|
1 | (1) |
|
1.2 How does predictive dynamics work? |
|
|
2 | (1) |
|
1.3 Why data-driven human motion prediction does not work |
|
|
3 | (1) |
|
|
4 | (3) |
|
|
5 | (2) |
|
Chapter 2 Human Modeling: Kinematics |
|
|
7 | (34) |
|
|
7 | (3) |
|
2.2 General rigid body displacement |
|
|
10 | (3) |
|
2.2.1 Example: rotation and translation |
|
|
11 | (2) |
|
2.3 Concept of extended vectors and homogeneous coordinates |
|
|
13 | (1) |
|
2.4 Basic transformations |
|
|
14 | (3) |
|
2.4.1 Example: knee rotation |
|
|
16 | (1) |
|
2.5 Composite transformations |
|
|
17 | (2) |
|
2.5.1 Example: composite transformations |
|
|
17 | (2) |
|
2.6 Directed transformation graphs |
|
|
19 | (5) |
|
2.6.1 Example: multiple transformations |
|
|
20 | (4) |
|
2.7 Determining the position of a multi-segmental link: forward kinematics |
|
|
24 | (1) |
|
2.8 The Denavit---Hartenberg representation |
|
|
25 | (2) |
|
2.9 The kinematic skeleton |
|
|
27 | (3) |
|
2.10 Establishing coordinate systems |
|
|
30 | (6) |
|
2.10.1 Example: a 9-DOF model of an upper limb |
|
|
31 | (1) |
|
2.10.2 Example: DH parameters of the lower limb |
|
|
32 | (4) |
|
|
36 | (1) |
|
2.12 Variations in anthropometry |
|
|
36 | (1) |
|
2.13 A 55-DOF whole body model |
|
|
37 | (2) |
|
2.14 Global DOFs and virtual joints |
|
|
39 | (1) |
|
|
40 | (1) |
|
|
40 | (1) |
|
Chapter 3 Posture Prediction and Optimization |
|
|
41 | (28) |
|
3.1 What is optimization? |
|
|
41 | (1) |
|
3.2 What is posture prediction? |
|
|
41 | (2) |
|
|
43 | (1) |
|
3.4 Posture prediction versus inverse kinematics |
|
|
44 | (1) |
|
3.4.1 Analytical and geometric IK methods |
|
|
44 | (1) |
|
3.4.2 Empirically-based posture prediction |
|
|
44 | (1) |
|
3.5 Optimization-based posture prediction |
|
|
45 | (2) |
|
|
46 | (1) |
|
|
47 | (1) |
|
|
47 | (1) |
|
|
47 | (2) |
|
3.7 Development of human performance measures |
|
|
49 | (9) |
|
|
50 | (1) |
|
|
50 | (1) |
|
3.7.3 Delta potential energy |
|
|
51 | (2) |
|
|
53 | (2) |
|
3.7.5 Single-objective optimization |
|
|
55 | (2) |
|
3.7.6 Numerical solutions to optimization problems |
|
|
57 | (1) |
|
3.8 Motion between two points |
|
|
58 | (1) |
|
3.9 Joint profiles as B-spline curves |
|
|
58 | (2) |
|
3.10 Motion prediction formulation |
|
|
60 | (1) |
|
|
60 | (1) |
|
|
60 | (1) |
|
3.11 A 15-DOF motion prediction |
|
|
61 | (1) |
|
3.11.1 The 15-DOF Denavit-Hartenberg model |
|
|
61 | (1) |
|
3.12 Optimization algorithm |
|
|
62 | (1) |
|
3.13 Motion prediction of a 15-DOF model |
|
|
63 | (2) |
|
3.14 Multi-objective problem statement |
|
|
65 | (1) |
|
3.15 Design variables and constraints |
|
|
65 | (1) |
|
|
65 | (4) |
|
|
66 | (3) |
|
Chapter 4 Recursive Dynamics |
|
|
69 | (26) |
|
|
69 | (1) |
|
4.2 General static torque |
|
|
70 | (2) |
|
4.3 Dynamic equations of motion |
|
|
72 | (2) |
|
4.4 Formulation of regular Lagrangian equation |
|
|
74 | (1) |
|
4.4.1 Sensitivity analysis |
|
|
75 | (1) |
|
4.5 Recursive Lagrangian equations |
|
|
75 | (6) |
|
4.5.1 Forward recursive kinematics |
|
|
76 | (1) |
|
4.5.2 Backward recursive dynamics |
|
|
76 | (1) |
|
4.5.3 Sensitivity analysis |
|
|
77 | (1) |
|
4.5.4 Kinematics sensitivity analysis |
|
|
77 | (1) |
|
4.5.5 Dynamics sensitivity analysis |
|
|
78 | (2) |
|
4.5.6 Joint profile discretization |
|
|
80 | (1) |
|
4.6 Examples using a 2-DOF arm |
|
|
81 | (6) |
|
|
82 | (1) |
|
4.6.2 Forward recursive kinematics |
|
|
83 | (1) |
|
4.6.3 Backward recursive dynamics |
|
|
84 | (1) |
|
|
84 | (2) |
|
4.6.5 Closed-form equations of motion |
|
|
86 | (1) |
|
4.7 Trajectory planning example |
|
|
87 | (1) |
|
4.8 Arm lifting motion with load example |
|
|
88 | (2) |
|
|
90 | (5) |
|
|
92 | (3) |
|
Chapter 5 Predictive Dynamics |
|
|
95 | (32) |
|
|
95 | (1) |
|
|
95 | (4) |
|
5.3 Dynamic stability: zero-moment point |
|
|
99 | (2) |
|
|
101 | (1) |
|
|
102 | (1) |
|
|
103 | (2) |
|
|
104 | (1) |
|
5.6.2 Minimal set of constraints |
|
|
104 | (1) |
|
|
105 | (3) |
|
5.7.1 Time-dependent constraints |
|
|
105 | (2) |
|
5.7.2 Time-independent constraints |
|
|
107 | (1) |
|
5.8 Discretization and scaling |
|
|
108 | (1) |
|
5.9 Numerical example: single pendulum |
|
|
109 | (11) |
|
5.9.1 Description of the problem |
|
|
109 | (2) |
|
5.9.2 Simple swing motion with boundary conditions---PD solution |
|
|
111 | (3) |
|
5.9.3 Oscillating motion with boundary conditions---PD solution |
|
|
114 | (2) |
|
5.9.4 Oscillating motion with boundary conditions and one state-response constraint---PD solution |
|
|
116 | (2) |
|
5.9.5 Oscillating motion with boundary conditions and two state-response constraints |
|
|
118 | (2) |
|
5.10 Example formulations |
|
|
120 | (1) |
|
|
120 | (7) |
|
|
125 | (2) |
|
Chapter 6 Strength and Fatigue: Experiments and Modeling |
|
|
127 | (22) |
|
|
127 | (1) |
|
|
128 | (4) |
|
|
132 | (2) |
|
6.4 Normative strength data |
|
|
134 | (3) |
|
6.5 Representing strength percentiles |
|
|
137 | (1) |
|
6.6 Mapping strength to digital humans: strength surfaces |
|
|
138 | (2) |
|
|
140 | (5) |
|
6.8 Strength and fatigue interaction |
|
|
145 | (1) |
|
|
145 | (4) |
|
|
145 | (4) |
|
Chapter 7 Predicting the Biomechanics of Walking |
|
|
149 | (38) |
|
|
149 | (2) |
|
7.2 Joints as degrees of freedom (DOF) |
|
|
151 | (1) |
|
7.3 Muscle versus joint space |
|
|
151 | (1) |
|
7.4 Spatial kinematics model |
|
|
152 | (4) |
|
7.4.1 A kinematic 55-DOF human model |
|
|
152 | (2) |
|
7.4.2 Global DOFs and virtual joints |
|
|
154 | (1) |
|
7.4.3 Forward recursive kinematics |
|
|
155 | (1) |
|
|
156 | (2) |
|
7.5.1 Backward recursive dynamics |
|
|
156 | (1) |
|
7.5.2 Sensitivity analysis |
|
|
157 | (1) |
|
7.5.3 Mass and inertia property |
|
|
157 | (1) |
|
|
158 | (3) |
|
7.6.1 One-step gait model |
|
|
158 | (1) |
|
7.6.2 Ground reaction forces (GRF) |
|
|
159 | (2) |
|
7.7 Zero-Moment point (ZMP) |
|
|
161 | (3) |
|
7.7.1 Global forces at the pelvis |
|
|
162 | (1) |
|
7.7.2 Global forces at origin |
|
|
163 | (1) |
|
|
163 | (1) |
|
7.8 Calculating ground reaction forces (GRF) |
|
|
164 | (2) |
|
7.9 Optimization formulation |
|
|
166 | (5) |
|
|
166 | (1) |
|
|
166 | (1) |
|
|
167 | (4) |
|
7.10 Numerical discretization |
|
|
171 | (1) |
|
7.11 Example: predicting the gait |
|
|
172 | (4) |
|
|
172 | (4) |
|
|
176 | (7) |
|
7.13 Implementations of the predictive dynamics walking formulation |
|
|
183 | (1) |
|
7.13.1 Effect of constrained joints |
|
|
183 | (1) |
|
7.13.2 Sideways and backward walking |
|
|
183 | (1) |
|
7.13.3 Effect of changing anthropometry |
|
|
183 | (1) |
|
7.13.4 Effect of changing loads |
|
|
183 | (1) |
|
7.13.5 Walking on uneven terrains |
|
|
184 | (1) |
|
7.13.6 Asymmetric walking |
|
|
184 | (1) |
|
7.13.7 Walking on different terrain types |
|
|
184 | (1) |
|
|
184 | (3) |
|
|
185 | (2) |
|
Chapter 8 Predictive Dynamics: Lifting |
|
|
187 | (20) |
|
|
187 | (1) |
|
8.2 Equations of motion and sensitivities |
|
|
187 | (3) |
|
8.2.1 Forward recursive kinematics |
|
|
187 | (2) |
|
8.2.2 Backward recursive dynamics |
|
|
189 | (1) |
|
8.2.3 Sensitivity analysis |
|
|
189 | (1) |
|
8.3 Dynamic stability and ground reaction forces (GRF) |
|
|
190 | (1) |
|
|
191 | (1) |
|
|
191 | (1) |
|
8.5 Predictive dynamics optimization formulation |
|
|
192 | (5) |
|
8.5.1 Design variables and time discretization |
|
|
193 | (1) |
|
8.5.2 Objective functions |
|
|
194 | (1) |
|
|
194 | (3) |
|
8.6 Computational procedure for multi-objective optimization |
|
|
197 | (2) |
|
8.6.1 Lifting determinants and error quantification |
|
|
198 | (1) |
|
8.7 Predictive dynamics simulation |
|
|
199 | (2) |
|
|
201 | (3) |
|
|
204 | (3) |
|
|
204 | (3) |
|
Chapter 9 Validation of Predictive Dynamics Tasks |
|
|
207 | (30) |
|
|
207 | (2) |
|
|
209 | (1) |
|
9.3 Motion capture systems |
|
|
209 | (4) |
|
|
209 | (1) |
|
9.3.2 Optical motion capture systems |
|
|
210 | (1) |
|
9.3.3 Marker placement protocol |
|
|
211 | (1) |
|
9.3.4 Subject preparation and data collection |
|
|
212 | (1) |
|
|
213 | (3) |
|
9.4.1 Normalizing the data |
|
|
213 | (1) |
|
9.4.2 Validation methodology |
|
|
214 | (2) |
|
9.5 Validation of predictive walking task |
|
|
216 | (8) |
|
9.5.1 Walking task description |
|
|
216 | (1) |
|
9.5.2 Walking determinants |
|
|
217 | (1) |
|
|
217 | (1) |
|
|
217 | (7) |
|
9.6 Validation of box-lifting task |
|
|
224 | (9) |
|
9.6.1 Lifting task description |
|
|
224 | (1) |
|
9.6.2 Box-lifting determinants |
|
|
225 | (1) |
|
|
225 | (1) |
|
|
225 | (8) |
|
9.7 Feedback to the simulation |
|
|
233 | (1) |
|
|
233 | (4) |
|
|
234 | (3) |
|
Chapter 10 Concluding Remarks |
|
|
237 | (10) |
|
10.1 Benefits of predictive dynamics |
|
|
237 | (3) |
|
10.1.1 Using the Denavit-Hartenberg (DH) method is effective in modeling human kinematics |
|
|
237 | (1) |
|
10.1.2 Predictive dynamics solves dynamics without integration |
|
|
238 | (1) |
|
10.1.3 Predictive dynamics renders natural motion |
|
|
238 | (1) |
|
10.1.4 Predictive dynamics induces natural behavior |
|
|
238 | (1) |
|
10.1.5 Predictive dynamics admits cause and effect |
|
|
238 | (1) |
|
10.1.6 Predictive dynamics uses joint space, not muscle space |
|
|
239 | (1) |
|
10.1.7 Predictive dynamics uses dynamic strength surfaces |
|
|
239 | (1) |
|
10.1.8 The PD validation process is effective |
|
|
240 | (1) |
|
|
240 | (3) |
|
|
240 | (1) |
|
10.2.2 Simulating an injury or a disability |
|
|
240 | (1) |
|
10.2.3 Sports biomechanics and kinesiology |
|
|
241 | (1) |
|
|
241 | (1) |
|
10.2.5 Testing equipment, digital prototyping, human systems integration |
|
|
241 | (1) |
|
|
242 | (1) |
|
|
242 | (1) |
|
|
243 | (4) |
|
10.3.1 Soft-tissue dynamics |
|
|
243 | (1) |
|
|
243 | (1) |
|
10.3.3 Psychological and physiological factors |
|
|
243 | (1) |
|
10.3.4 Modeling with a high level of fidelity |
|
|
244 | (1) |
|
10.3.5 Real-time simulation |
|
|
244 | (1) |
|
|
245 | (2) |
Bibliography |
|
247 | (22) |
Index |
|
269 | |