Atjaunināt sīkdatņu piekrišanu

Hybrid Artificial Intelligent Systems: 19th International Conference, HAIS 2024, Salamanca, Spain, October 911, 2024, Proceedings, Part I 2025 ed. [Mīkstie vāki]

  • Formāts: Paperback / softback, 355 pages, height x width: 235x155 mm, 87 Illustrations, color; 11 Illustrations, black and white; XVII, 355 p. 98 illus., 87 illus. in color., 1 Paperback / softback
  • Sērija : Lecture Notes in Artificial Intelligence 14857
  • Izdošanas datums: 09-Oct-2024
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 303174182X
  • ISBN-13: 9783031741821
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 118,31 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 139,19 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 355 pages, height x width: 235x155 mm, 87 Illustrations, color; 11 Illustrations, black and white; XVII, 355 p. 98 illus., 87 illus. in color., 1 Paperback / softback
  • Sērija : Lecture Notes in Artificial Intelligence 14857
  • Izdošanas datums: 09-Oct-2024
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 303174182X
  • ISBN-13: 9783031741821
Citas grāmatas par šo tēmu:
This two-part proceedings volume constitutes the refereed proceedings of the 19th International Conference on Hybrid Artificial Intelligent Systems (HAIS 2024), held in Salamanca, Spain, during October 911, 2024.





The 52 full papers were carefully reviewed and selected from 112 submissions. They were organized in topical sections as follows: 





Part I: Biomedical Applications, Data Mining and Decision Support Systems, Deep Learning, Evolutionary Computation and Optimization.





Part II: HAIS Applications, HAIS Energy Applications, Image and Text Processing, Reinforced Learning.
Biomedical Applications.- Surface EMG Profiling in Parkinsons Disease
Advancing Severity Assessment with GCN SVM.- Batch balancing Improvement with
Data Augmentation Techniques for Clinical Electroencephalographic Data.- The
Third Codon Nucleotides Role in Genetic Recombination Within SARSCoV2 Spike
Protein A Pilot Study.- Machine learning for the identification of biomarker
and risk factors associated with depression in adult population Preliminary
results on a small cohort.- Unveiling HIV1 U Sequences Shedding Light Through
Transfer Learning on Genomic Spectrograms.- Model to early detection of
autism spectrum disorder through opinion mining approach.- A Short Analysis
of Hybrid Approaches in COVID19 for Detection and Diagnosing.- A Graph Neural
Network with Multi head Attention for  Universal Brain Disease Diagnosis from
fMRI Images.- A computer vision approach to detect facial characteristics
related to encephalopathy in term infants.- Data Mining and Decision Support
Systems.- SPADE Norms a distributed general framework for normative multi
agent systems.- Finding Optimal Classroom Arrangements to Minimize Cheating
in Exams Using a Hybrid AI System.- Resilience to the Flowing Unknown an Open
Set Recognition Framework for Data Streams.- A comparison procedure for the
evaluation of metaheuristics.- Nyström and RFF Ensembles For Large Scale
Kernel Predictions.- Application of transfer learning to online models in
malware detection.- A New Training Algorithm for Support Vector Machines.-
Soft Adaptive Segments for Bio Inspired Temporal Memory.- Assessing
Generative Artificial Intelligence in Fundamental Physics with Gaussian
Processes.- Implementation of Classical Decision Trees in a Quantum Computing
paradigm.- Machine Learning methods as Robust Quantum Noise Estimators.- Deep
Learning.- The Impact of Data Annotations on the Performance of Object
Detection Models in Icon Detection for GUI Images.- Bayesian Model Selection
Pruning in Predictive Maintenance.- Neonates crying detection through feature
extraction and Machine Learning methods.- Differentiable Prototypes with
Distributed Memory Network for Continual Learning.- Evolutionary Computation
and Optimization.- Efficient Continuous Sign Language Recognition with
Temporal Shift and Channel Attention.- Solving the clustered minimum routing
tree problem using Prüfer coding based hybrid genetic algorithms.- Diversity
Population Metrics in Diploid and Haploid Genetic Algorithm Variants.- Early
failure detection for Air Production Unit in Metro Trains.