Atjaunināt sīkdatņu piekrišanu

Hybrid Soft Computing for Multilevel Image and Data Segmentation Softcover reprint of the original 1st ed. 2016 [Mīkstie vāki]

  • Formāts: Paperback / softback, 235 pages, height x width: 235x155 mm, weight: 3869 g, 39 Illustrations, color; 60 Illustrations, black and white; XIV, 235 p. 99 illus., 39 illus. in color., 1 Paperback / softback
  • Sērija : Computational Intelligence Methods and Applications
  • Izdošanas datums: 29-Jun-2018
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3319837583
  • ISBN-13: 9783319837581
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 91,53 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 107,69 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 235 pages, height x width: 235x155 mm, weight: 3869 g, 39 Illustrations, color; 60 Illustrations, black and white; XIV, 235 p. 99 illus., 39 illus. in color., 1 Paperback / softback
  • Sērija : Computational Intelligence Methods and Applications
  • Izdošanas datums: 29-Jun-2018
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3319837583
  • ISBN-13: 9783319837581
Citas grāmatas par šo tēmu:
This book explains efficient solutions for segmenting the intensity levels of different types of multilevel images. The authors present hybrid soft computing techniques, which have advantages over conventional soft computing solutions as they incorporate data heterogeneity into the clustering/segmentation procedures.



This is a useful introduction and reference for researchers and graduate students of computer science and electronics engineering, particularly in the domains of image processing and computational intelligence.

Introduction.- Image Segmentation: A Review.- Self-supervised Gray Level Image Segmentation Using an Optimized MUSIG (OptiMUSIG) Activation Function.- Self-supervised Color Image Segmentation Using Parallel OptiMUSIG (ParaOptiMUSIG) Activation Function.- Self-supervised Gray Level Image Segmentation Using Multiobjective Based Optimized MUSIG (OptiMUSIG) Activation Function.- Self-supervised Color Image Segmentation Using Multiobjective Based Parallel Optimized MUSIG (ParaOptiMUSIG) Activation Function.- Unsupervised Genetic Algorithm Based Automatic Image Segmentation and Data Clustering Technique Validated by Fuzzy Intercluster Hostility Index.