Atjaunināt sīkdatņu piekrišanu

E-grāmata: Hydraulic Fracturing

, (NSI Technologies, LLC, Tulsa, Oklahoma, USA)
  • Formāts - PDF+DRM
  • Cena: 250,46 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Hydraulic Fracturing effectively busts the myths associated with hydraulic fracturing. It explains how to properly engineer and optimize a hydraulically fractured well by selecting the right materials, evaluating the economic benefits of the project, and ensuring the safety and success of the people, environment, and equipment. From data estimation to design, operation, and performance management, the text presents a logical, step-by-step process for hydraulic fracturing that aids in proper engineering decision making when stimulating a particular reservoir. Numerous problem sets reinforce the learning and aid in risk assessment. Additional material is available from the CRC Press website.

Recenzijas

"Hydraulic fracturing is becoming more and more prevalent in connection with the development of unconventional resources all over the world. Understanding the mechanisms associated with this type of completion method and [ possessing] knowledge related to state-of-the-art, full 3D fracturing design modeling tools are mandatory for this industry. Unfortunately, the stimulation industry still relies on simplistic and plain wrong modeling and, hence, this book can make a difference. It represents an update on fracturing technology." Arthur Bale, Statoil, Bergen, Norway

"This book definitely fills an important role of providing practical hydraulic fracturing field experience. The authors clearly explain the sometimes deviations from theoretical predictions. In addition, chapter 15 contains exceptional discussions on shale stimulations and horizontal completions." Jean-Claude Roegiers, Professor Emeritus, University of Oklahoma, Norman, USA

"definitely a book that all young fracture engineers should have at their side. The book is very well laid out and can be used as a workflow for designing fracture treatments. Its practical writing style makes it easy to understand and comments within the text on potential problem areas are an invaluable source of knowledge." Kirk Bartko, Saudi Aramco, Saudi Arabian Oil Company, Dhahran

"... presents a logical, step-by-step process, ... effectively busting the myths associated with hydraulic fracturing." SirReadalot.org, October 21, 2015

"Well organized and easily understood, Hydraulic Fracturing is highly recommended to all fracture engineers and other industry personnel interested in knowing more about the process." Oil and Gas International, August 2015 "Hydraulic fracturing is becoming more and more prevalent in connection with the development of unconventional resources all over the world. Understanding the mechanisms associated with this type of completion method and [ possessing] knowledge related to state-of-the-art, full 3D fracturing design modeling tools are mandatory for this industry. Unfortunately, the stimulation industry still relies on simplistic and plain wrong modeling and, hence, this book can make a difference. It represents an update on fracturing technology." Arthur Bale, Statoil, Bergen, Norway

"This book definitely fills an important role of providing practical hydraulic fracturing field experience. The authors clearly explain the sometimes deviations from theoretical predictions. In addition, chapter 15 contains exceptional discussions on shale stimulations and horizontal completions." Jean-Claude Roegiers, Professor Emeritus, University of Oklahoma, Norman, USA

"definitely a book that all young fracture engineers should have at their side. The book is very well laid out and can be used as a workflow for designing fracture treatments. Its practical writing style makes it easy to understand and comments within the text on potential problem areas are an invaluable source of knowledge." Kirk Bartko, Saudi Aramco, Saudi Arabian Oil Company, Dhahran

"... presents a logical, step-by-step process, ... effectively busting the myths associated with hydraulic fracturing." SirReadalot.org, October 21, 2015

Series Preface xix
Preface xxiii
Chapter Abstracts xxv
Authors xxxiii
1 History, Introduction, and How a Treatment Is Conducted 1(32)
Introduction
1(7)
Fracture Geometry
8(1)
Fracturing Fluids
9(1)
Proppants
10(15)
Surface Equipment and Setup
11(3)
Pumps
14(3)
Blenders
17(1)
Proppant Handling
18(1)
Iron
19(1)
Auxiliary Equipment
20(2)
Sensors
22(1)
Wellhead Isolation Tools
23(1)
Offshore Equipment
23(2)
Treatment Design
25(4)
Modern Treatment Design Process
29(1)
Additional Comments
30(1)
References
31(2)
2 Definitions and Simple Geometry Models 33(26)
Introduction
33(1)
What Is Fracturing?
34(2)
Why Fracture?
36(5)
Damage Bypass
36(1)
Increased Productivity
37(1)
Reservoir Management
38(3)
Treatment Design Variables
41(15)
Wellbore Breakdown
42(1)
Material Balance
42(1)
Fracture Height, H
42(3)
Fluid Loss (C and Vspurt)
45(2)
Fracture Width
47(4)
PNet (Net Pressure)
51(5)
References
56(3)
3 Design Variables 59(50)
Design Parameters: Fracture Height
59(16)
Effect of Closure Stress on H F
62(6)
Effect of Formation Thickness
68(3)
Effect of Modulus Contrasts on Height Growth
71(2)
Other Variables Affecting Fracture Height
73(2)
Design Parameters: Modulus (E)
75(5)
Effects of Modulus
76(3)
Typical Values
79(1)
Young's Modulus from Sonic Logs
80(1)
Design Parameters: Fluid Loss ("C" and Spurt)
80(25)
Fluid Loss Coefficient, C
81(3)
CIII (or CWall)
84(4)
Effect of Proppant
88(1)
Fluid Loss Additives
89(1)
C from Fracturing Pressure Analysis
90(1)
Spurt Loss
90(3)
Total or Combined C
93(1)
Fracture Tip Effects, Apparent Toughness, Klc
94(7)
Design Parameters: Frac Fluid Viscosity
101(1)
Design Parameters: Pump Rate
102(2)
Design Parameters: Summary
104(1)
References
105(4)
4 Rock Stresses 109(32)
Introduction
109(2)
History
111(1)
Vertical Stress
111(1)
Horizontal Stress
112(11)
Gravity Stress
113(5)
Effect of Reservoir Pressure
118(1)
Tectonics
119(4)
In Situ Stress Direction
123(4)
Fracture Orientation and Azimuth
123(4)
In Situ Stress Differences
127(5)
Stress Barriers for Height Containment: ΔσShale-Sand
128(1)
Stress Barriers for Height Containment—ΔσShale—Sand—How Big?
129(1)
Measured Stress Differences
129(1)
Secondary Fractures
130(1)
Secondary Fracture: "T" Fracture
130(1)
Secondary Fracture: Natural Fractures
131(1)
In Situ Stress Measurement
132(2)
Injection Tests
132(1)
Shear Wave Sonic Log Data
133(1)
Proppant Stress
134(1)
Wellbore Breakdown
135(4)
References
139(2)
5 Petrophysics 141(18)
Depth
141(1)
Primary Logs
142(15)
Temperature
143(1)
Density Neutron
143(2)
Density Log
143(1)
Neutron Log
144(1)
Effective Porosity
144(1)
Density—Neutron Crossover
144(1)
Gamma Ray
145(2)
Sonic Logs
147(7)
Acoustic Log (Compressional Wave Velocity)
147(2)
Static versus Dynamic Modulus
149(1)
Shear-Wave Sonic Logs
150(2)
Effects of Anisotropy
152(1)
Gas Effect on Vp
153(1)
Image Logs
154(3)
References
157(2)
6 Post-Frac Performance 159(26)
Fracture Length or Conductivity?
162(3)
Fracture Length: Xf
163(2)
Equivalent Wellbore Radius
165(2)
Folds of Increase
167(8)
Drainage Boundary Effects
173(2)
Acid
175(1)
Transient Flow
176(7)
References
183(2)
7 Treatment Scheduling 185(36)
Introduction
185(1)
Perfect Support Fluids
185(4)
Pad Stage for Perfect Support Fluids
189(1)
Banking Fluids
189(3)
Pad Stage for Banking Fluids
192(1)
Tip Screen-Out Fracturing
192(23)
Pad Volume and Proppant Schedule for Tip Screen-Out Designs
194(21)
Time Temperature Fluid History
215(1)
Unexpected Design Flaws or "Gotchas"
216(2)
References
218(1)
Additional References
219(2)
8 Frac Pressure Analysis 221(114)
History
221(1)
Similarity to Pressure Transient Analysis
222(2)
Closure Pressure
224(46)
Microfrac Tests
229(1)
Step-Rate Injection Test
230(1)
Pump-In/Decline Testing
231(36)
Pump-In/Decline Data Plus Step-Rate Data
267(1)
Pump-In/Flowback Stress Test
267(3)
Treating Pressure (PNet) Analysis
270(16)
Nolte—Smith Log—Log Interpretation
271(7)
General Interpretation
278(5)
Quantitative Interpretation
283(3)
What Can We Learn?
286(1)
PDL Analysis
286(10)
Fluid Efficiency
289(1)
ΔP*, G Plot Analysis
290(6)
Analysis for Reservoir Parameters (After-Closure Analysis)
296(5)
Importance of Derivative
301(1)
Acknowledgment
301(3)
Appendix A: Application and Examples
304(1)
Low Permeability
304(10)
Small-Volume Pump-In/Decline Test
305(1)
"Low k" Example
306(1)
Step-Rate Test
306(1)
Pad Fluid Minifrac
306(8)
Moderate/High Permeability
314(7)
Appendix B: G Function
321(1)
QLoss: Fluid Loss Rate
321(4)
Fracture Stiffness
325(3)
G Function
328(2)
G Function Plot for ΔP*
330(1)
References
331(3)
Additional References
334(1)
9 Engineering the Fluid 335(24)
Introduction
335(2)
History
337(5)
Types of Fracturing Fluids
342(4)
Water Frac
344(1)
Linear Gel
344(1)
Cross-Linked Gels
344(1)
Oil-Based Fluids
345(1)
Foam/Polyemulsions
345(1)
Characterization of Fracturing Fluids
346(8)
Rheological Models
349(3)
Shear History Simulation
352(1)
Slurry Viscosity
353(1)
Proppant Fall Rates
354(1)
Viscosity and Fracture Treating Pressure
355(1)
References
356(1)
Additional References
357(2)
10 Fracturing Fluid Components 359(22)
Water
359(1)
Clay Control Agents
359(1)
Friction Reducers
360(2)
Polyacrylic Acid
360(1)
Polyacrylamide
361(1)
Partially Hydrolyzed Polyacrylamide
361(1)
Acrylamidomethylpropane Sulfonate
361(1)
Gelling Agents
362(7)
Guar
362(5)
Hydroxyethyl Cellulose and Carboxymethylhydroxyethyl Cellulose
367(1)
Viscoelastic Surfactant
368(1)
Foam/Polyemulsions
369(1)
Oil-Based Fluids
369(4)
Cross-Linkers
370(3)
Borate
370(2)
Titanium and Zirconium
372(1)
Breakers
373(3)
Oxidizer
373(2)
Acids
375(1)
Enzymes
375(1)
Viscosity Stabilizers
376(1)
Buffers
377(1)
Surfactants/Mutual Solvents
377(1)
Biocides/Bactericides
378(1)
References
379(1)
Additional References
380(1)
11 Proppants 381(32)
Introduction
381(1)
History of Proppant
382(11)
Conductivity
393(4)
Proppant Conductivity Corrections
397(7)
Data Spread
398(1)
Fracture Width
398(1)
Proppant Embedment
399(1)
Time and Temperature Effects
399(1)
Cyclic Loading
400(1)
Fines Generation
401(1)
Fluid Damage
401(1)
Non-Darcy Flow Effects
402(1)
Multiphase Flow Effects
402(1)
Corrections to ISO Standard Conductivities
403(1)
Proppant Size and Placement
404(3)
Conductivity
405(1)
Transport
405(1)
Placement
406(1)
Frac and Pack/Frac for Sand Control
407(1)
Proppant Concentration
407(2)
Problems
409(1)
References
410(1)
Additional References
411(2)
12 Perforating 413(10)
Introduction
413(2)
What Is the Hole Size and How Much Penetration Is Needed?
413(1)
Number of Shots?
413(1)
What Phasing Should Be Used?
413(2)
Completion Strategies
415(6)
Post-Frac Production
415(1)
Single Zone
415(1)
Deviated Well Effects
416(1)
Limited Entry Completions
417(3)
Just-in-Time Perforating Completions
420(1)
References
421(1)
Additional References
422(1)
13 Acid Fracturing 423(54)
Introduction
423(3)
Selecting Acid Fluids
426(1)
Treatment Techniques
427(2)
Carbonate Acid Chemistry
429(3)
Acid Reaction Rate
432(2)
Reaction Rate Laboratory Testing
434(5)
Acid Mass Transport
439(2)
Fluid Loss
441(1)
Wormholes
442(5)
Natural Fracture Fluid Loss
447(1)
Acid-Etched Conductivity
448(14)
Experimental Procedures
448(3)
Conductivity Testing Experimental Results
451(3)
Modeling Acid Fracture Conductivity
454(12)
Volumetric Conductivity Model
454(2)
Nierode—Kruk
456(4)
University of Texas Correlation
460(2)
Additives
462(4)
Placement/Diversion
466(5)
General Guidelines for Ball Sealers
469(2)
Design Examples
471(4)
References
475(1)
Selected References
476(1)
14 Fracture Diagnostics 477(20)
Introduction
477(1)
Post-Frac Logging
477(11)
Temperature Surveys
478(2)
Post-Frac Radioactive Tracers
480(6)
Chemical Tracers
486(2)
Microseismic Monitoring
488(2)
Tiltmeters
490(5)
References
495(2)
15 Special Topics: Shale/Horizontal Well Fracturing, Frac Packing, and Waste Disposal 497(72)
Shale/Horizontal Well Fracturing
497(40)
History
497(2)
Introduction
499(2)
Natural Fractures/Matrix Permeability
501(7)
Horizontal Well Fracturing: Fracture Spacing
508(8)
Horizontal Well Fracturing: Near Well Geomechanics
516(5)
Transverse versus Longitudinal Fractures
521(1)
Horizontal Well Treatment Design
522(15)
Frac Packing (Fracturing in Sand Control Environments)
537(18)
Introduction
537(4)
Installation Practices
538(2)
Advantages
540(1)
Design Methodologies
541(3)
Tip Screen-Out Designs
541(1)
Frac-N-Pack
542(2)
Main Issues Associated with Soft Rock
544(8)
Failure Mechanics
544(1)
Net Pressure and Tip Mechanics
544(1)
Fluid Loss Control
545(4)
Halo Effect
549(3)
Modeling
552(1)
Additional Comments
552(3)
Key Elements
555(1)
Using Hydraulic Fracturing for Waste Disposal
556(5)
Introduction
556(1)
Similarities and Differences with HF Stimulations
556(2)
Main Solids Injection Scenarios
558(1)
Receiving Formations
559(2)
Key Elements
561(1)
Appendix: Wellbore Breakdown Calculations
561(1)
Elastic Analysis for an Open Hole
561(2)
Nonpenetrating Fluid
563(1)
Penetrating Fluid
564(1)
Tensile Failure Mechanism
565(1)
References
566(2)
Additional References
568(1)
16 Quality Control 569(66)
Introduction
569(1)
Pre-Job Planning
570(3)
Logistics
571(1)
Equipment
571(1)
Operators In-House Communications
572(1)
Qualifying Source Water
573(6)
Source Water Analysis
573(4)
Fluid Qualification Test
577(1)
Gelling on the Fly
578(1)
Acid Quality Checks
579(1)
Base Oil
580(1)
Quality Control of Proppants
580(1)
Transportation and On-Location Storage
580(1)
Service Company Requirements
581(1)
On-Location Activities
581(8)
Additive Inventories
581(1)
Blenders and Sand Hoppers
582(1)
Flowmeter Calibration
582(2)
Base Gel Flowmeters
582(1)
Additive Flowmeters
583(1)
Rig-Up
584(3)
Pressure Testing
587(1)
Safety Meeting
587(2)
Diagnostic Testing
589(3)
Initial Breakdown and Instant Shut-In Pressure
589(1)
Step-Rate Test
589(1)
Diagnostic Fracture Injection Test
590(1)
Minifrac or Datafrac
590(1)
Other Tests
590(2)
During the Job
592(4)
Pressure Response
592(1)
Operational Problems
593(1)
Outside the Frac Van
594(1)
Fluid Testing during the Treatment
595(1)
Flushing
596(1)
Post-Frac
596(1)
Initial Flowback
597(1)
Energized Fluids
598(1)
Post-Job Evaluation
598(1)
Back in the Office
598(1)
Calculations
599(2)
Example QC/QA Reporting Forms
601(12)
Appendix A: Quality Control and Testing of Water-Based Fracturing Fluids
613(1)
Friction Reducers/Slick Water
613(1)
Friction Reducer Stability and Water Compatibility
613(1)
Linear Gels
613(6)
Batch-Mix Preparation
614(3)
Batch-Mixed Quality Control Procedures
615(2)
Continuous-Mix Preparation
617(2)
Quality Control Procedures
618(1)
Cross-Linked Gels
619(5)
Pre-Job Testing
620(4)
Viscoelastic Surfactants
624(2)
Pre-Job Testing
624(1)
During Job Sampling
625(1)
Energized Fluids
626(2)
Appendix B: Quality Control and Testing of Oil-Based Fluids
628(1)
Qualifying Base Oil
628(1)
Gelled Oil Systems
629(2)
Pre-Job Testing
629(1)
During Job
630(1)
Appendix C: Generic Procedures/Guidelines for a Step-Rate Test/Step-Down Test
631(1)
Step-Rate Test (Used to Measure Fracture Extension Pressure)
631(2)
Step-Down Test (Used to Measure Friction vs. Pump Rate)
633(1)
References
634(1)
Additional References
634(1)
17 Hydraulic Fracture Design Data Needs 635(8)
Introduction
635(1)
Reservoir Data
635(2)
Log Data
637(1)
Geologic Data
638(1)
Fracturing Data
638(4)
In Situ Stress
639(1)
Modulus Data
639(1)
Frac Fluid and Fluid Loss Data
640(1)
Pre-Frac Tests
640(1)
Well Data
640(1)
Economic Data
641(1)
Fracturing Fluid Data
641(1)
Proppant Data
642(1)
References
642(1)
Additional Reference
642(1)
18 Example Design 643(42)
Well History
643(1)
Log Data
643(2)
Reservoir Data
645(1)
Reservoir Fluid Data
645(1)
Core Data
645(1)
Future Production Conditions
645(38)
Stresses: Estimate Stress/Pressure
646(1)
Estimated Overburden Stress
646(1)
Closure Stress
646(1)
Proppant Stress
646(1)
Calculate the In Situ Proppant Kfw
647(1)
Determine the Expected Folds of Increase
648(2)
Transient Flow
650(1)
Estimated Modulus
651(1)
Fracture Height, Estimated Sand/Shale Au, and Maximum PNet
651(3)
Fluid Loss: Estimate C and Spurt Loss
654(2)
Fluid Viscosity
656(2)
Fracture Pressure Data: Closure Stress Tests
658(7)
Fracture Geometry Equations
665(2)
Design Equation Variables
667(4)
Perkins and Kern Geometry
667(1)
Geertsma—de Klerk Geometry
668(1)
Radial Geometry
668(3)
Example of Treatment Scheduling for Prue #1 with Viscous Fluids Using a PKN Model
671(6)
Proppant Scheduling
674(1)
Nomenclature and Definitions
675(2)
Temperatfire Exposure Time
677(4)
Comparison with Computer Model Fracture Design
681(2)
References
683(2)
19 Glossary and Terms 685(14)
Basic Relations
687(2)
Post-Frac Response
687(1)
Fracture Geometry Basic Variables: H, E, C, Klc, µ, Q
688(1)
Data Needs/Data Sources
689(8)
Reservoir Data
689(1)
Lab Tests: Probably the Only Definitive Tests Would Be Laboratory Fluid Sensitivity Tests on Core Samples: Fracturing Data
690(4)
Pre-Frac Tests
694(1)
Fracture Treatment Data
694(1)
Operations Data
695(1)
Economic Data
696(1)
Fracturing Fluid Data
696(1)
Proppant Data
697(1)
References
697(1)
Additional References
697(2)
20 Problems 699(58)
Prue #1
699(12)
Well History
699(1)
Log Data
700(1)
Reservoir Data
701(1)
Reservoir Fluid Data
701(1)
Core Data
701(1)
Future Production Conditions
701(10)
Prue #1—Suggested Solution
711(12)
Well History
711(1)
Log Data
712(1)
Reservoir Data
712(1)
Reservoir Fluid Data
712(1)
Core Data
712(1)
Future Production Conditions
713(10)
Janie Bea
723(1)
Janie Bea: Shallow Gas Zone
723(8)
Well History
723(1)
Log and Core Data
724(1)
Economic Data
724(1)
Fracturing and Operations Data
725(1)
Stress—Strain Data
725(1)
Log
726(4)
Operations
730(1)
Final Design
731(1)
Janie Bea: Shallow Gas Zone
732(6)
Well History
732(1)
Log and Core Data
732(1)
Economic Data
732(1)
Fracturing and Operations Data
733(1)
Stress—Strain Data
733(1)
Log
733(3)
Operations
736(1)
Final Design
737(1)
CCCruz #1
738(1)
CCCruz #1 Wilcox Low-Permeability Gas Well
738(10)
Well History
738(1)
Offset Well
738(1)
Log Data
738(1)
Core Data
739(1)
Reservoir Data
739(1)
Reservoir Fluid Data
740(1)
Well Completion
740(1)
Future Production Conditions
741(7)
CCCruz #1 Wilcox Low-Permeability Gas Well
748(7)
Well History
748(1)
Offset Well
748(1)
Log Data
749(1)
Core Data
749(1)
Reservoir Data
749(1)
Reservoir Fluid Data
749(1)
Well Completion
749(1)
Future Production Conditions
750(5)
Reference
755(2)
Index 757
Michael Berry Smith holds a Ph.D in rock mechanics from Rice University, Houston, Texas, USA, and has more than 30 years of experience in rock mechanics, well completions, and hydraulic fracturing. While with Amoco Production Company, Dr. Smith co-developed the framework for fracturing pressure analysis, which revolutionized the fracturing technology. He has been a consultant worldwide, served several times as a distinguished lecturer at the Society of Petroleum Engineers (SPE), authored multiple chapters in the SPE monograph Recent Advances In Hydraulic Fracturing, and developed and presented SPE short courses on fracturing pressure analysis. Recently, he was presented with the SPE Lester C. Uren Award for his contributions to hydraulic fracturing technology.

Carl T. Montgomery is recognized within the industry as one of the leaders in all areas of stimulation, including hydraulic fracturing, acid fracturing, matrix stimulation, cavity completions, waste/cuttings injection, rock mechanics, and scale prevention/removal. In addition, he has considerable experience in cementing, sand management, conformance control, perforating strategy, and formation damage. Formerly, he was with ConocoPhillips, Arco, and Dowell Schlumberger. He also served as a special member of the petroleum engineering graduate faculty at the University of Oklahoma, Norman, USA, and received the 2007 SPE Drilling and Completions Award.