Atjaunināt sīkdatņu piekrišanu

E-grāmata: Hydraulic Modelling: An Introduction: Principles, Methods and Applications

(formerly at University of Newcastle-upon-Tyne, UK), (University of Swansea, UK), (University of Newcastle-upon-Tyne, UK), (University of Montpellier, France)
  • Formāts: 616 pages
  • Izdošanas datums: 24-Oct-2018
  • Izdevniecība: CRC Press
  • ISBN-13: 9781351988933
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 108,94 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 616 pages
  • Izdošanas datums: 24-Oct-2018
  • Izdevniecība: CRC Press
  • ISBN-13: 9781351988933
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Modelling forms a vital part of all engineering design, yet many hydraulic engineers are not fully aware of the assumptions they make. These assumptions can have important consequences when choosing the best model to inform design decisions.

Considering the advantages and limitations of both physical and mathematical methods, this book will help you identify the most appropriate form of analysis for the hydraulic engineering application in question. All models require the knowledge of their background, good data and careful interpretation and so this book also provides guidance on the range of accuracy to be expected of the model simulations and how they should be related to the prototype.

Applications to models include:











open channel systems closed conduit flows storm drainage systems estuaries coastal and nearshore structures hydraulic structures.

This an invaluable guide for students and professionals.

Recenzijas

'This book should definitely find its place in all libraries concerned with hydraulics, hydroinformatics and modelling. It certainly should be available in their respective institutions to all engineers who are involved in modelling or are using results of models. And it should be advised as essential reading to students at postgraduate level in hydraulics and hydroinformatics.'

Jean A. Cunge, Journal of Hydroinformatics

'The book is not only an invaluable guide for students but addresses all researchers and practitioners working in the field of water resources. Because of this it should find its place not only in the libraries of research institutes and universities, but also should be of interest and available to all concerned with the design and construction of all hydraulic structures.'

Vodni Hospodarstvi (Water Management, in Czech)

'The authors have written an outstanding and timely work.'

Willi H. Hager and Michael Pfister, Journal of Hydraulic Research

'A must-have for every hydraulics engineer who looks to the future of their profession.'

Corado Gissoni, L'Acqua

Preface x
Acknowledgements xi
List of main symbols xii
1 Introduction 1
2 Theoretical background - mathematics 6
2.1 Ordinary differential equations
6
2.2 Partial differential equations and their classification
15
2.3 Dispersion and dissipation in hyperbolic linear equations
19
2.4 Parabolic and elliptical equations, diffusion, quasilinearity and systems of equations
21
2.5 Initial and boundary conditions for partial differential equations: existence and uniqueness
24
2.6 Well-posed problems
26
2.7 The influence of initial and boundary conditions on a solution: characteristics, domains of dependence and determinacy, and the d'Alembert solution
28
2.8 The method of characteristics and a non-linear first-order equation
33
2.9 Discontinuous solutions and conservation laws
34
2.10 The classification of quasilinear and semilinear systems, hyperbolic systems and characteristics
39
2.11 A fundamental difference between elliptical and hyperbolic equations
45
2.12 The derivation of a mathematical model involving partial differential equations – the shallow-water equations
46
References
49
Appendix
52
Eigenvalues, eigenvectors, and an application of matrix diagonalization
52
3 Numerical techniques used in hydraulic modelling 60
3.1 Introduction
60
3.2 Solving large sets of algebraic equations
61
3.3 The numerical solution of ordinary differential equations
69
3.4 Two-point boundary-value problems
78
3.5 The numerical solution of partial differential equations
83
References
109
4 Theoretical background – hydraulics 112
4.1 Introduction
112
4.2 Some basic concepts and equations in hydrodynamics
112
4.3 Hydraulics – basic concepts, boundary layer, turbulence
115
4.4 Flow in conduits
123
4.5 Introduction to ocean wave motion
133
4.6 Environmental processes – hydrodynamic factors, sediment mechanics, water quality and air–water flows
136
References
153
5 Development of physical models 156
5.1 Introduction
156
5.2 Dimensional analysis
157
5.3 Method of synthesis
165
5.4 Basic concepts and definitions in the theory of similarity
167
5.5 General law of mechanical similarity in hydrodynamics
170
5.6 Approximate mechanical (dynamic) similarity
178
5.7 The main similarity laws
179
5.8 Some further dimensionless numbers and limits of similarity
184
5.9 Methods of modelling complex phenomena
187
5.10 Analogue models
189
References
194
Selected bibliography
195
6 Tools and procedures 197
6.1 Laboratory installations
197
6.2 Physical models – types, construction, materials
203
6.3 Laboratory measuring methods and instrumentation
208
6.4 Mathematical models – tools
219
6.5 Procedures during work with models
222
References
224
7 Modelling of open-channel systems 226
7.1 Introduction
226
7.2 Mathematical description of open-channel processes
226
7.3 Computational models of open-channel flow
248
7.4 Special applications
280
7.5 Physical models of open-channel flow
295
7.6 Case studies
304
References
313
8 Environmental modelling of open-channel systems 317
8.1 Introduction
317
8.2 Computational models of transport of dissolved matter
317
8.3 Computational models of morphological processes
328
8.4 Models of water-quality processes
339
8.5 Physical models of morphological processes
341
8.6 Case studies
346
References
352
9 Modelling of closed-conduit flow 353
9.1 Introduction
353
9.2 Computational models of quasi-steady closed-conduit flow
353
9.3 Computational models of pipe transients
362
9.4 Physical modelling of closed-conduit flow
381
9.5 Case study
388
References
391
10 Modelling of urban drainage systems 392
10.1 Introduction
392
10.2 Governing equations of urban drainage systems
393
10.3 Solution behaviour – initial and boundary conditions
399
10.4 Numerical solution techniques
402
10.5 Case study
411
References
417
11 Modelling of estuaries 418
11.1 Introduction
418
11.2 Hydrodynamic equations
421
11.3 One-dimensional modelling of estuaries
439
11.4 Two- and three-dimensional modelling of estuaries
443
11.5 Environmental modelling of estuaries and lakes
449
11.6 Physical modelling of estuaries
462
11.7 Case studies
465
References
478
12 Modelling of coastal and nearshore structures and processes 482
12.1 Introduction
482
12.2 Physics and processes
482
12.3 Computational modelling
500
12.4 Physical modelling
511
12.5 Practical modelling aspects and case studies
515
12.6 Concluding remarks
525
References
526
13 Modelling of hydraulic structures 531
13.1 Introduction
531
13.2 Physics and processes
531
13.3 Physical (hydraulic) modelling
557
13.4 Mathematical modelling
569
13.5 Case studies
571
13.6 Concluding remarks
581
References
581
Author index 586
Subject index 592
Pavel Novak is Emeritus Professor of Civil and Hydraulic Engineering at the University of Newcastle upon Tyne, UK.

Vincent Guinot is Professor at University of Montpellier, France.

Alan Jeffrey is Emeritus Professor of Engineering Mathematics at the University of Newcastle upon Tyne, UK.

Dominic Reeve is Professor of Coastal Dynamics at the University of Plymouth, UK.